The purpose of computer vision is to make computers capable of understanding environments from visual information. Computer vision has been an interesting theme in the field of artificial intelligence. It involves a variety of intelligent information processing: both pattern processing for extraction of meaningful symbols from visual information and symbol processing for determining what the symbols represent. The term "3D computer vision" is used if visual information has to be interpreted as three-dimensional scenes. 3D computer vision is more challenging because objects are seen from limited directions and some objects are occluded by others. In 1980, the author wrote a book "Computer Vision" in Japanese to introduce an interesting new approach to visual information processing developed so far. Since then computer vision has made remarkable progress: various rangefinders have become available, new methods have been developed to obtain 3D informa tion, knowledge representation frameworks have been proposed, geometric models which were developed in CAD/CAM have been used for computer vision, and so on. The progress in computer vision technology has made it possible to understand more complex 3 D scenes. There is an increasing demand for 3D computer vision. In factories, for example, automatic assembly and inspection can be realized with fewer con straints than conventional ones which employ two-dimensional computer vision.
The field of computer vision combines techniques from physics, mathematics, psychology, artificial intelligence, and computer science to examine how machines might construct meaningful descriptions of their surrounding environment. The editors of this volume, prominent researchers and leaders of the SRI International AI Center Perception Group, have selected sixty papers, most published since 1980, with the viewpoint that computer vision is concerned with solving seven basic problems: - Reconstructing 3D scenes from 2D images - Decomposing images into their component parts - Recognizing and assigning labels to scene objects - Deducing and describing relations among scene objects - Determining the nature of computer architectures that can support the visual function - Representing abstractions in the world of computer memory - Matching stored descriptions to image representation Each chapter of this volume addresses one of these problems through an introductory discussion, which identifies major ideas and summarizes approaches, and through reprints of key research papers. Two appendices on crucial assumptions in image interpretation and on parallel architectures for vision applications, a glossary of technical terms, and a comprehensive bibliography and index complete the volume.
This volume contains the texts of papers presented at the Second Irish Conference on Artificial Intelligence and Cognitive Science, held at Dublin City University in September 1989. This Conference has now become the major annual forum in Ireland for the presentation and discussion of current research work in the multi-disciplinary area of Artificial Intelligence. Papers in this volume have been divided into seven sections which vary in their subject matter. Image processing, human-computer interaction, planning, applications and theory of expert systems, learn ing, speech, and natural language processing and semantics repre sents as broad a spectrum of AI and AI-related topics as can be found in current AI research. This harmonises quite well with the aims and scope of the AICS'89 conference which were to provide a forum for industry and academic research to discuss AI and AI-related topics and we were delighted that such a broad coverage of topics was achieved. Despite the broad nature, however, none of the papers are primarily review articles; each paper presents new research results within its own specific area.
Machine Vision technology is becoming an indispensible part of the manufacturing industry. Biomedical and scientific applications of machine vision and imaging are becoming more and more sophisticated, and new applications continue to emerge. This book gives an overview of ongoing research in machine vision and presents the key issues of scientific and practical interest. A selected board of experts from the US, Japan and Europe provides an insight into some of the latest work done on machine vision systems and appliccations.