Complete Coverage of the Current Practice of Computer GraphicsComputer Graphics: From Pixels to Programmable Graphics Hardware explores all major areas of modern computer graphics, starting from basic mathematics and algorithms and concluding with OpenGL and real-time graphics. It gives students a firm foundation in today's high-performance graphic
Computer Graphics from Scratch demystifies the algorithms used in modern graphics software and guides beginners through building photorealistic 3D renders. Computer graphics programming books are often math-heavy and intimidating for newcomers. Not this one. Computer Graphics from Scratch takes a simpler approach by keeping the math to a minimum and focusing on only one aspect of computer graphics, 3D rendering. You’ll build two complete, fully functional renderers: a raytracer, which simulates rays of light as they bounce off objects, and a rasterizer, which converts 3D models into 2D pixels. As you progress you’ll learn how to create realistic reflections and shadows, and how to render a scene from any point of view. Pseudocode examples throughout make it easy to write your renderers in any language, and links to live JavaScript demos of each algorithm invite you to explore further on your own. Learn how to: Use perspective projection to draw 3D objects on a 2D plane Simulate the way rays of light interact with surfaces Add mirror-like reflections and cast shadows to objects Render a scene from any camera position using clipping planes Use flat, Gouraud, and Phong shading to mimic real surface lighting Paint texture details onto basic shapes to create realistic-looking objects Whether you’re an aspiring graphics engineer or a novice programmer curious about how graphics algorithms work, Gabriel Gambetta’s simple, clear explanations will quickly put computer graphics concepts and rendering techniques within your reach. All you need is basic coding knowledge and high school math. Computer Graphics from Scratch will cover the rest.
Reflecting the rapid expansion of the use of computer graphics and of C as a programming language of choice for implementation, this new version of the best-selling Hearn and Baker text converts all programming code into the C language. Assuming the reader has no prior familiarity with computer graphics, the authors present basic principles for design, use, and understanding of computer graphics systems. The authors are widely considered authorities in computer graphics, and are known for their accessible writing style.
This text covers the theoretical, mathematical foundations, as well as the practical, algorithmic methods needed to design and implement computer graphics program, with a central theme of generation and manipulation of graphic scenes in real time with human control or interaction. Features covers important graphic standards and device-level method makes a range of advanced material accessible to all software and hardware independent.
We have written this book principally for users and practitioners of computer graphics. In particular, system designers, independent software vendors, graphics system implementers, and application program developers need to understand the basic standards being put in place at the so-called Virtual Device Interface and how they relate to other industry standards, both formal and de facto. Secondarily, the book has been targetted at technical managers and advanced students who need some understanding of the graphics standards and how they fit together, along with a good overview of the Computer Graphics Interface (CGI) proposal and Computer Graphics Metafile (CGM) standard in particular. Part I, Chapters 1,2, and 3; Part II, Chapters 10 and 11; Part III, Chapters 15, 16, and 17; and some of the Appendices will be of special interest. Finally, these same sections will interest users in government and industry who are responsible for selecting, buying and installing commercial implementations of the standards. The CGM is already a US Federal Information Processing Standard (FIPS 126), and we expect the same status for the CGI when its development is completed and it receives formal approval by the standards-making bodies.
Written for game programmers and developers, this book covers GPU techniques and supporting applications that are commonly used in games and similar real-time 3D applications. The authors describe the design of programs and systems that can be used to implement games and other applications whose requirements are to render real-time animation sequen
Computer graphics is being used to an increasing extent in the biological disciplines. As hardware costs drop and technological developments intro duce new graphics possibilities, researchers and teachers alike are becoming aware of the value of visual display methods. In this book we introduce the basics of computer graphics from the standpoints of both hardware and software, and review the main areas within biology to which computer graphics have been applied. The com puter graphics literature is vast, and we have not been able to give a full course on graphics techniques in these pages. We have instead tried to give a fairly balanced account of the use of graphics in biology, suitable for the reader with some elementary grounding in computer programming. We have included extensive references both to material cited in the text and to other relevant publications. One of the factors that has fuelled the increase in graphics use is the ease with which the more simple graphics techniques may be implemented on microcomputers. We hav.e, therefore, paid attention to microcomputer graphics as well as graphics techniques suitable for larger machines. Our examples range from simple two-dimensional graph plots to highly complex surface representations of molecules that require sophisticated graphics devices and mainframe computers on which to run. The book is separated into two logical sections. The first part con centrates on general graphics techniques, giving an overview from which the reader will be able to refer to other more specialised texts as required.
Drawing on an impressive roster of experts in the field, Fundamentals of Computer Graphics, Fourth Edition offers an ideal resource for computer course curricula as well as a user-friendly personal or professional reference. Focusing on geometric intuition, the book gives the necessary information for understanding how images get onto the screen by using the complementary approaches of ray tracing and rasterization. It covers topics common to an introductory course, such as sampling theory, texture mapping, spatial data structure, and splines. It also includes a number of contributed chapters from authors known for their expertise and clear way of explaining concepts. Highlights of the Fourth Edition Include: Updated coverage of existing topics Major updates and improvements to several chapters, including texture mapping, graphics hardware, signal processing, and data structures A text now printed entirely in four-color to enhance illustrative figures of concepts The fourth edition of Fundamentals of Computer Graphics continues to provide an outstanding and comprehensive introduction to basic computer graphic technology and theory. It retains an informal and intuitive style while improving precision, consistency, and completeness of material, allowing aspiring and experienced graphics programmers to better understand and apply foundational principles to the development of efficient code in creating film, game, or web designs. Key Features Provides a thorough treatment of basic and advanced topics in current graphics algorithms Explains core principles intuitively, with numerous examples and pseudo-code Gives updated coverage of the graphics pipeline, signal processing, texture mapping, graphics hardware, reflection models, and curves and surfaces Uses color images to give more illustrative power to concepts
Cg is a complete programming environment for the fast creation of special effects and real-time cinematic quality experiences on multiple platforms. This text provides a guide to the Cg graphics language.
How computer graphics transformed the computer from a calculating machine into an interactive medium, as seen through the histories of five technical objects. Most of us think of computer graphics as a relatively recent invention, enabling the spectacular visual effects and lifelike simulations we see in current films, television shows, and digital games. In fact, computer graphics have been around as long as the modern computer itself, and played a fundamental role in the development of our contemporary culture of computing. In Image Objects, Jacob Gaboury offers a prehistory of computer graphics through an examination of five technical objects--an algorithm, an interface, an object standard, a programming paradigm, and a hardware platform--arguing that computer graphics transformed the computer from a calculating machine into an interactive medium. Gaboury explores early efforts to produce an algorithmic solution for the calculation of object visibility; considers the history of the computer screen and the random-access memory that first made interactive images possible; examines the standardization of graphical objects through the Utah teapot, the most famous graphical model in the history of the field; reviews the graphical origins of the object-oriented programming paradigm; and, finally, considers the development of the graphics processing unit as the catalyst that enabled an explosion in graphical computing at the end of the twentieth century. The development of computer graphics, Gaboury argues, signals a change not only in the way we make images but also in the way we mediate our world through the computer--and how we have come to reimagine that world as computational.