Computers and Data Processing

Computers and Data Processing

Author: Harvey M. Deitel

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 665

ISBN-13: 148326470X

DOWNLOAD EBOOK

Computers and Data Processing provides information pertinent to the advances in the computer field. This book covers a variety of topics, including the computer hardware, computer programs or software, and computer applications systems. Organized into five parts encompassing 19 chapters, this book begins with an overview of some of the fundamental computing concepts. This text then explores the evolution of modern computing systems from the earliest mechanical calculating devices to microchips. Other chapters consider how computers present their results and explain the storage and retrieval of massive amounts of computer-accessible information from secondary storage devices. This book discusses as well the development installation, evaluation, and control of computer systems. The final chapter discusses the use of computers in the transportation systems and the ways in which they make possible other innovations in transportation. This book is a valuable resource for computer scientists, systems analysts, computer programmers, mathematicians, and computer specialists.


Data Processing

Data Processing

Author: Susan Wooldridge

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 272

ISBN-13: 1483105245

DOWNLOAD EBOOK

Data Processing: Made Simple, Second Edition presents discussions of a number of trends and developments in the world of commercial data processing. The book covers the rapid growth of micro- and mini-computers for both home and office use; word processing and the 'automated office'; the advent of distributed data processing; and the continued growth of database-oriented systems. The text also discusses modern digital computers; fundamental computer concepts; information and data processing requirements of commercial organizations; and the historical perspective of the computer industry. The computer hardware and software and the development and implementation of a computer system are considered. The book tackles careers in data processing; the tasks carried out by the data processing department; and the way in which the data processing department fits in with the rest of the organization. The text concludes by examining some of the problems of running a data processing department, and by suggesting some possible solutions. Computer science students will find the book invaluable.


Federal Statistics, Multiple Data Sources, and Privacy Protection

Federal Statistics, Multiple Data Sources, and Privacy Protection

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2018-01-27

Total Pages: 195

ISBN-13: 0309465370

DOWNLOAD EBOOK

The environment for obtaining information and providing statistical data for policy makers and the public has changed significantly in the past decade, raising questions about the fundamental survey paradigm that underlies federal statistics. New data sources provide opportunities to develop a new paradigm that can improve timeliness, geographic or subpopulation detail, and statistical efficiency. It also has the potential to reduce the costs of producing federal statistics. The panel's first report described federal statistical agencies' current paradigm, which relies heavily on sample surveys for producing national statistics, and challenges agencies are facing; the legal frameworks and mechanisms for protecting the privacy and confidentiality of statistical data and for providing researchers access to data, and challenges to those frameworks and mechanisms; and statistical agencies access to alternative sources of data. The panel recommended a new approach for federal statistical programs that would combine diverse data sources from government and private sector sources and the creation of a new entity that would provide the foundational elements needed for this new approach, including legal authority to access data and protect privacy. This second of the panel's two reports builds on the analysis, conclusions, and recommendations in the first one. This report assesses alternative methods for implementing a new approach that would combine diverse data sources from government and private sector sources, including describing statistical models for combining data from multiple sources; examining statistical and computer science approaches that foster privacy protections; evaluating frameworks for assessing the quality and utility of alternative data sources; and various models for implementing the recommended new entity. Together, the two reports offer ideas and recommendations to help federal statistical agencies examine and evaluate data from alternative sources and then combine them as appropriate to provide the country with more timely, actionable, and useful information for policy makers, businesses, and individuals.


Towards Interoperable Research Infrastructures for Environmental and Earth Sciences

Towards Interoperable Research Infrastructures for Environmental and Earth Sciences

Author: Zhiming Zhao

Publisher: Springer Nature

Published: 2020-07-24

Total Pages: 375

ISBN-13: 3030528294

DOWNLOAD EBOOK

This open access book summarises the latest developments on data management in the EU H2020 ENVRIplus project, which brought together more than 20 environmental and Earth science research infrastructures into a single community. It provides readers with a systematic overview of the common challenges faced by research infrastructures and how a ‘reference model guided’ engineering approach can be used to achieve greater interoperability among such infrastructures in the environmental and earth sciences. The 20 contributions in this book are structured in 5 parts on the design, development, deployment, operation and use of research infrastructures. Part one provides an overview of the state of the art of research infrastructure and relevant e-Infrastructure technologies, part two discusses the reference model guided engineering approach, the third part presents the software and tools developed for common data management challenges, the fourth part demonstrates the software via several use cases, and the last part discusses the sustainability and future directions.


Handbook of Research on Intelligent Data Processing and Information Security Systems

Handbook of Research on Intelligent Data Processing and Information Security Systems

Author: Bilan, Stepan Mykolayovych

Publisher: IGI Global

Published: 2019-11-29

Total Pages: 434

ISBN-13: 1799812928

DOWNLOAD EBOOK

Intelligent technologies have emerged as imperative tools in computer science and information security. However, advanced computing practices have preceded new methods of attacks on the storage and transmission of data. Developing approaches such as image processing and pattern recognition are susceptible to breaches in security. Modern protection methods for these innovative techniques require additional research. The Handbook of Research on Intelligent Data Processing and Information Security Systems provides emerging research exploring the theoretical and practical aspects of cyber protection and applications within computer science and telecommunications. Special attention is paid to data encryption, steganography, image processing, and recognition, and it targets professionals who want to improve their knowledge in order to increase strategic capabilities and organizational effectiveness. As such, this book is ideal for analysts, programmers, computer engineers, software engineers, mathematicians, data scientists, developers, IT specialists, academicians, researchers, and students within fields of information technology, information security, robotics, artificial intelligence, image processing, computer science, and telecommunications.


Software Architecture for Big Data and the Cloud

Software Architecture for Big Data and the Cloud

Author: Ivan Mistrik

Publisher: Morgan Kaufmann

Published: 2017-06-12

Total Pages: 472

ISBN-13: 0128093382

DOWNLOAD EBOOK

Software Architecture for Big Data and the Cloud is designed to be a single resource that brings together research on how software architectures can solve the challenges imposed by building big data software systems. The challenges of big data on the software architecture can relate to scale, security, integrity, performance, concurrency, parallelism, and dependability, amongst others. Big data handling requires rethinking architectural solutions to meet functional and non-functional requirements related to volume, variety and velocity. The book's editors have varied and complementary backgrounds in requirements and architecture, specifically in software architectures for cloud and big data, as well as expertise in software engineering for cloud and big data. This book brings together work across different disciplines in software engineering, including work expanded from conference tracks and workshops led by the editors. - Discusses systematic and disciplined approaches to building software architectures for cloud and big data with state-of-the-art methods and techniques - Presents case studies involving enterprise, business, and government service deployment of big data applications - Shares guidance on theory, frameworks, methodologies, and architecture for cloud and big data


Knowledge Graphs and Big Data Processing

Knowledge Graphs and Big Data Processing

Author: Valentina Janev

Publisher: Springer Nature

Published: 2020-07-15

Total Pages: 212

ISBN-13: 3030531996

DOWNLOAD EBOOK

This open access book is part of the LAMBDA Project (Learning, Applying, Multiplying Big Data Analytics), funded by the European Union, GA No. 809965. Data Analytics involves applying algorithmic processes to derive insights. Nowadays it is used in many industries to allow organizations and companies to make better decisions as well as to verify or disprove existing theories or models. The term data analytics is often used interchangeably with intelligence, statistics, reasoning, data mining, knowledge discovery, and others. The goal of this book is to introduce some of the definitions, methods, tools, frameworks, and solutions for big data processing, starting from the process of information extraction and knowledge representation, via knowledge processing and analytics to visualization, sense-making, and practical applications. Each chapter in this book addresses some pertinent aspect of the data processing chain, with a specific focus on understanding Enterprise Knowledge Graphs, Semantic Big Data Architectures, and Smart Data Analytics solutions. This book is addressed to graduate students from technical disciplines, to professional audiences following continuous education short courses, and to researchers from diverse areas following self-study courses. Basic skills in computer science, mathematics, and statistics are required.


IoT-Based Data Analytics for the Healthcare Industry

IoT-Based Data Analytics for the Healthcare Industry

Author: Sanjay Kumar Singh

Publisher: Academic Press

Published: 2020-11-07

Total Pages: 342

ISBN-13: 0128214767

DOWNLOAD EBOOK

IoT Based Data Analytics for the Healthcare Industry: Techniques and Applications explores recent advances in the analysis of healthcare industry data through IoT data analytics. The book covers the analysis of ubiquitous data generated by the healthcare industry, from a wide range of sources, including patients, doctors, hospitals, and health insurance companies. The book provides AI solutions and support for healthcare industry end-users who need to analyze and manipulate this vast amount of data. These solutions feature deep learning and a wide range of intelligent methods, including simulated annealing, tabu search, genetic algorithm, ant colony optimization, and particle swarm optimization. The book also explores challenges, opportunities, and future research directions, and discusses the data collection and pre-processing stages, challenges and issues in data collection, data handling, and data collection set-up. Healthcare industry data or streaming data generated by ubiquitous sensors cocooned into the IoT requires advanced analytics to transform data into information. With advances in computing power, communications, and techniques for data acquisition, the need for advanced data analytics is in high demand. - Provides state-of-art methods and current trends in data analytics for the healthcare industry - Addresses the top concerns in the healthcare industry using IoT and data analytics, and machine learning and deep learning techniques - Discusses several potential AI techniques developed using IoT for the healthcare industry - Explores challenges, opportunities, and future research directions, and discusses the data collection and pre-processing stages


Computer Science and Communications Dictionary

Computer Science and Communications Dictionary

Author: Martin Weik

Publisher: Springer Science & Business Media

Published: 2000-12-31

Total Pages: 1948

ISBN-13: 0792384253

DOWNLOAD EBOOK

The Computer Science and Communications Dictionary is the most comprehensive dictionary available covering both computer science and communications technology. A one-of-a-kind reference, this dictionary is unmatched in the breadth and scope of its coverage and is the primary reference for students and professionals in computer science and communications. The Dictionary features over 20,000 entries and is noted for its clear, precise, and accurate definitions. Users will be able to: Find up-to-the-minute coverage of the technology trends in computer science, communications, networking, supporting protocols, and the Internet; find the newest terminology, acronyms, and abbreviations available; and prepare precise, accurate, and clear technical documents and literature.