Computer Architecture for Scientists

Computer Architecture for Scientists

Author: Andrew A. Chien

Publisher: Cambridge University Press

Published: 2022-03-10

Total Pages: 266

ISBN-13: 1009008382

DOWNLOAD EBOOK

The dramatic increase in computer performance has been extraordinary, but not for all computations: it has key limits and structure. Software architects, developers, and even data scientists need to understand how exploit the fundamental structure of computer performance to harness it for future applications. Ideal for upper level undergraduates, Computer Architecture for Scientists covers four key pillars of computer performance and imparts a high-level basis for reasoning with and understanding these concepts: Small is fast – how size scaling drives performance; Implicit parallelism – how a sequential program can be executed faster with parallelism; Dynamic locality – skirting physical limits, by arranging data in a smaller space; Parallelism – increasing performance with teams of workers. These principles and models provide approachable high-level insights and quantitative modelling without distracting low-level detail. Finally, the text covers the GPU and machine-learning accelerators that have become increasingly important for mainstream applications.


Scientific Programming and Computer Architecture

Scientific Programming and Computer Architecture

Author: Divakar Viswanath

Publisher: MIT Press

Published: 2017-07-28

Total Pages: 625

ISBN-13: 0262036290

DOWNLOAD EBOOK

A variety of programming models relevant to scientists explained, with an emphasis on how programming constructs map to parts of the computer. What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to "get under the hood," and the discussion is tied to specific programs. The book digs into linkers, compilers, operating systems, and computer architecture to understand how the different parts of the computer interact with programs. It begins with a review of C/C++ and explanations of how libraries, linkers, and Makefiles work. Programming models covered include Pthreads, OpenMP, MPI, TCP/IP, and CUDA.The emphasis on how computers work leads the reader into computer architecture and occasionally into the operating system kernel. The operating system studied is Linux, the preferred platform for scientific computing. Linux is also open source, which allows users to peer into its inner workings. A brief appendix provides a useful table of machines used to time programs. The book's website (https://github.com/divakarvi/bk-spca) has all the programs described in the book as well as a link to the html text.


Computer Architecture for Scientists

Computer Architecture for Scientists

Author: Andrew A. Chien

Publisher: Cambridge University Press

Published: 2022-03-10

Total Pages: 265

ISBN-13: 1316518531

DOWNLOAD EBOOK

A principled, high-level view of computer performance and how to exploit it. Ideal for software architects and data scientists.


Computer Architecture

Computer Architecture

Author: Silvia M. Mueller

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 560

ISBN-13: 3662042673

DOWNLOAD EBOOK

Hardware correctness is becoming ever more important in the design of computer systems. The authors introduce a powerful new approach to the design and analysis of modern computer architectures, based on mathematically well-founded formal methods which allows for rigorous correctness proofs, accurate hardware costs determination, and performance evaluation. This book develops, at the gate level, the complete design of a pipelined RISC processor with a fully IEEE-compliant floating-point unit. In contrast to other design approaches, the design presented here is modular, clean and complete.


Parallel Computer Organization and Design

Parallel Computer Organization and Design

Author: Michel Dubois

Publisher: Cambridge University Press

Published: 2012-08-30

Total Pages: 561

ISBN-13: 1139560344

DOWNLOAD EBOOK

Teaching fundamental design concepts and the challenges of emerging technology, this textbook prepares students for a career designing the computer systems of the future. In-depth coverage of complexity, power, reliability and performance, coupled with treatment of parallelism at all levels, including ILP and TLP, provides the state-of-the-art training that students need. The whole gamut of parallel architecture design options is explained, from core microarchitecture to chip multiprocessors to large-scale multiprocessor systems. All the chapters are self-contained, yet concise enough that the material can be taught in a single semester, making it perfect for use in senior undergraduate and graduate computer architecture courses. The book is also teeming with practical examples to aid the learning process, showing concrete applications of definitions. With simple models and codes used throughout, all material is made open to a broad range of computer engineering/science students with only a basic knowledge of hardware and software.


Computer Systems Organization & Architecture

Computer Systems Organization & Architecture

Author: John D. Carpinelli

Publisher: Pearson

Published: 2001

Total Pages: 616

ISBN-13:

DOWNLOAD EBOOK

This book provides up-to-date coverage of fundamental concepts for the design of computers and their subsystems. It presents material with a serious but easy-to-understand writing style that makes it accessible to readers without sacrificing important topics. The book emphasizes a finite state machine approach to CPU design, which provides a strong background for reader understanding. It forms a solid basis for readers to draw upon as they study this material and in later engineering and computer science practice. The book also examines the design of computer systems, including such topics as memory hierarchies, input/output processing, interrupts, and direct memory access, as well as advanced architectural aspects of parallel processing. To make the material accessible to beginners, the author has included two running examples of increasing complexity: the Very Simple CPU, which contains four instruction sets and shows very simple CPU design; and the Relatively Simple CPU which contains 16 instruction sets and adds enough complexity to illustrate more advanced concepts. Each chapter features a real-world machine on which the discussed organization and architecture concepts are implemented. This book is designed to teach computer organization/architecture to engineers and computer scientists.


Learning Computer Architecture with Raspberry Pi

Learning Computer Architecture with Raspberry Pi

Author: Eben Upton

Publisher: John Wiley & Sons

Published: 2016-09-13

Total Pages: 535

ISBN-13: 1119183936

DOWNLOAD EBOOK

Use your Raspberry Pi to get smart about computing fundamentals In the 1980s, the tech revolution was kickstarted by a flood of relatively inexpensive, highly programmable computers like the Commodore. Now, a second revolution in computing is beginning with the Raspberry Pi. Learning Computer Architecture with the Raspberry Pi is the premier guide to understanding the components of the most exciting tech product available. Thanks to this book, every Raspberry Pi owner can understand how the computer works and how to access all of its hardware and software capabilities. Now, students, hackers, and casual users alike can discover how computers work with Learning Computer Architecture with the Raspberry Pi. This book explains what each and every hardware component does, how they relate to one another, and how they correspond to the components of other computing systems. You'll also learn how programming works and how the operating system relates to the Raspberry Pi's physical components. Co-authored by Eben Upton, one of the creators of the Raspberry Pi, this is a companion volume to the Raspberry Pi User Guide An affordable solution for learning about computer system design considerations and experimenting with low-level programming Understandable descriptions of the functions of memory storage, Ethernet, cameras, processors, and more Gain knowledge of computer design and operation in general by exploring the basic structure of the Raspberry Pi The Raspberry Pi was created to bring forth a new generation of computer scientists, developers, and architects who understand the inner workings of the computers that have become essential to our daily lives. Learning Computer Architecture with the Raspberry Pi is your gateway to the world of computer system design.


Introduction to High Performance Computing for Scientists and Engineers

Introduction to High Performance Computing for Scientists and Engineers

Author: Georg Hager

Publisher: CRC Press

Published: 2010-07-02

Total Pages: 350

ISBN-13: 1439811938

DOWNLOAD EBOOK

Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the author


Quantum Computer Systems

Quantum Computer Systems

Author: Yongshan Ding

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 203

ISBN-13: 303101765X

DOWNLOAD EBOOK

This book targets computer scientists and engineers who are familiar with concepts in classical computer systems but are curious to learn the general architecture of quantum computing systems. It gives a concise presentation of this new paradigm of computing from a computer systems' point of view without assuming any background in quantum mechanics. As such, it is divided into two parts. The first part of the book provides a gentle overview on the fundamental principles of the quantum theory and their implications for computing. The second part is devoted to state-of-the-art research in designing practical quantum programs, building a scalable software systems stack, and controlling quantum hardware components. Most chapters end with a summary and an outlook for future directions. This book celebrates the remarkable progress that scientists across disciplines have made in the past decades and reveals what roles computer scientists and engineers can play to enable practical-scale quantum computing.