Computer Applications in Physics

Computer Applications in Physics

Author: Suresh Chandra

Publisher:

Published: 2014

Total Pages: 0

ISBN-13: 9781842658178

DOWNLOAD EBOOK

Because of encouraging response for first two editions of the book and for taking into account valuable suggestion from teachers as well as students, the text for Interpolation, Differentiation, Integration, Roots of an Equation, Solution of Simultaneous Equations, Eigenvalues and Eigenvectors of Matrix, Solution of Differential Equations, Solution of Partial Differential Equations, Monte Carlo Method and Simulation, Computation of some Functions is improved throughout and presented in a more systematic manner by using simple language. These techniques have vast applications in Science, Engineering and Technology. The C language is becoming popular in universities, colleges and engineering institutions. Besides the C language, programs are written in FORTRAN and BASIC languages. Consequently, this book has rather wide scope for its use. Each of the topics are developed in a systematic manner; thus making this book useful for graduate, postgraduate and engineering students. KEY FEATURES: Each topic is self explanatory and self contained Topics supported by numerical examples Computer programs are written in FORTRAN, BASIC and C Students friendly language is used


Statistical and Thermal Physics

Statistical and Thermal Physics

Author: Harvey Gould

Publisher: Princeton University Press

Published: 2021-09-14

Total Pages: 528

ISBN-13: 0691230846

DOWNLOAD EBOOK

A completely revised edition that combines a comprehensive coverage of statistical and thermal physics with enhanced computational tools, accessibility, and active learning activities to meet the needs of today's students and educators This revised and expanded edition of Statistical and Thermal Physics introduces students to the essential ideas and techniques used in many areas of contemporary physics. Ready-to-run programs help make the many abstract concepts concrete. The text requires only a background in introductory mechanics and some basic ideas of quantum theory, discussing material typically found in undergraduate texts as well as topics such as fluids, critical phenomena, and computational techniques, which serve as a natural bridge to graduate study. Completely revised to be more accessible to students Encourages active reading with guided problems tied to the text Updated open source programs available in Java, Python, and JavaScript Integrates Monte Carlo and molecular dynamics simulations and other numerical techniques Self-contained introductions to thermodynamics and probability, including Bayes' theorem A fuller discussion of magnetism and the Ising model than other undergraduate texts Treats ideal classical and quantum gases within a uniform framework Features a new chapter on transport coefficients and linear response theory Draws on findings from contemporary research Solutions manual (available only to instructors)


Computer Solutions in Physics

Computer Solutions in Physics

Author: Steven Van Wyk

Publisher: World Scientific

Published: 2008

Total Pages: 291

ISBN-13: 9812709363

DOWNLOAD EBOOK

With the great progress in numerical methods and the speed of the modern personal computer, if you can formulate the correct physics equations, then you only need to program a few lines of code to get the answer. Where other books on computational physics dwell on the theory of problems, this book takes a detailed look at how to set up the equations and actually solve them on a PC.Focusing on popular software package Mathematica, the book offers undergraduate student a comprehensive treatment of the methodology used in programing solutions to equations in physics.


Physics and Theoretical Computer Science

Physics and Theoretical Computer Science

Author: Jean-Pierre Gazeau

Publisher: IOS Press

Published: 2007

Total Pages: 349

ISBN-13: 1586037064

DOWNLOAD EBOOK

Aims to reinforce the interface between physical sciences, theoretical computer science, and discrete mathematics. This book assembles theoretical physicists and specialists of theoretical informatics and discrete mathematics in order to learn about developments in cryptography, algorithmics, and more.


Computer Applications in Plasma Science and Engineering

Computer Applications in Plasma Science and Engineering

Author: Adam T. Drobot

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 466

ISBN-13: 1461230926

DOWNLOAD EBOOK

This volume, which contains 15 contributions, is based on a minicourse held at the 1987 IEEE Plasma Science Meeting. The purpose of the lectures in the course was to acquaint the students with the multidisciplinary nature of computational techniques and the breadth of research areas in plasma science in which computation can address important physics and engineering design issues. These involve: electric and magnetic fields, MHD equations, chemistry, radiation, ionization etc. The contents of the contributions, written subsequent to the minicourse, stress important aspects of computer applications. They are: 1) the numerical methods used; 2) the range of applicability; 3) how the methods are actually employed in research and in the design of devices; and, as a compendium, 4) the multiplicity of approaches possible for any one problem. The materials in this book are organized by both subject and applications which display some of the richness in computational plasma physics.


Applied Physics, System Science and Computers

Applied Physics, System Science and Computers

Author: Klimis Ntalianis

Publisher: Springer

Published: 2017-07-20

Total Pages: 290

ISBN-13: 3319539345

DOWNLOAD EBOOK

This book reports on advanced theories and methods in three related fields of research: applied physics, system science and computers. It is organized in two main parts, the first of which covers applied physics topics, including lasers and accelerators; condensed matter, soft matter and materials science; nanoscience and quantum engineering; atomic, molecular, optical and plasma physics; as well as nuclear and high-energy particle physics. It also addresses astrophysics, gravitation, earth and environmental science, as well as medical and biological physics. The second part focuses on advances in system science and computers, exploring automatic circuit control, power systems, computer communication, fluid mechanics, simulation and modeling, software engineering, data structures and applications of artificial intelligence among other areas. Offering a collection of contributions presented at the 1st International Conference on Applied Physics, System Science and Computers (APSAC 2016), the book bridges the gap between applied physics and electrical engineering. It not only to presents new methods, but also promotes collaborations between different communities working on related topics at the interface between physics and engineering, with a special focus on communication, data modeling and visualization, quantum information, applied mechanics as well as bio and geophysics.


Computer Meets Theoretical Physics

Computer Meets Theoretical Physics

Author: Giovanni Battimelli

Publisher: Springer Nature

Published: 2020-06-17

Total Pages: 214

ISBN-13: 3030393992

DOWNLOAD EBOOK

This book provides a vivid account of the early history of molecular simulation, a new frontier for our understanding of matter that was opened when the demands of theoretical physicists were met by the availability of the modern computers. Since their inception, electronic computers have enormously increased their performance, thus making possible the unprecedented technological revolution that characterizes our present times. This obvious technological advancement has brought with it a silent scientific revolution in the practice of theoretical physics. In particular, in the physics of matter it has opened up a direct route from the microscopic physical laws to observable phenomena. One can now study the time evolution of systems composed of millions of molecules, and simulate the behaviour of macroscopic materials and actually predict their properties. Molecular simulation has provided a new theoretical and conceptual tool that physicists could only dream of when the foundations of statistical mechanics were laid. Molecular simulation has undergone impressive development, both in the size of the scientific community involved and in the range and scope of its applications. It has become the ubiquitous workhorse for investigating the nature of complex condensed matter systems in physics, chemistry, materials and the life sciences. Yet these developments remain largely unknown outside the inner circles of practitioners, and they have so far never been described for a wider public. The main objective of this book is therefore to offer a reasonably comprehensive reconstruction of the early history of molecular simulation addressed to an audience of both scientists and interested non-scientists, describing the scientific and personal trajectories of the main protagonists and discussing the deep conceptual innovations that their work produced.


Foundations of Crystallography with Computer Applications

Foundations of Crystallography with Computer Applications

Author: Maureen M. Julian

Publisher: CRC Press

Published: 2011-03-05

Total Pages: 368

ISBN-13: 1420060767

DOWNLOAD EBOOK

X-ray crystallography provides a unique opportunity to study the arrangement of atoms in a molecule. This book's modern computer-graphics centered approach facilitates the extrapolation of these valuable observations. A unified treatment of crystal systems, the book explains how atoms are arranged in crystals using the metric matrix. Featuring t


Applied Computational Physics

Applied Computational Physics

Author: Joseph F. Boudreau

Publisher: Oxford University Press

Published: 2018

Total Pages: 936

ISBN-13: 0198708637

DOWNLOAD EBOOK

A textbook that addresses a wide variety of problems in classical and quantum physics. Modern programming techniques are stressed throughout, along with the important topics of encapsulation, polymorphism, and object-oriented design. Scientific problems are physically motivated, solution strategies are developed, and explicit code is presented.