Computer Algebra in Quantum Field Theory

Computer Algebra in Quantum Field Theory

Author: Carsten Schneider

Publisher: Springer Science & Business Media

Published: 2013-10-05

Total Pages: 422

ISBN-13: 3709116163

DOWNLOAD EBOOK

The book focuses on advanced computer algebra methods and special functions that have striking applications in the context of quantum field theory. It presents the state of the art and new methods for (infinite) multiple sums, multiple integrals, in particular Feynman integrals, difference and differential equations in the format of survey articles. The presented techniques emerge from interdisciplinary fields: mathematics, computer science and theoretical physics; the articles are written by mathematicians and physicists with the goal that both groups can learn from the other field, including most recent developments. Besides that, the collection of articles also serves as an up-to-date handbook of available algorithms/software that are commonly used or might be useful in the fields of mathematics, physics or other sciences.


Computer Algebra In Physical Research: Memorial Volume For N N Govorun - Proceedings Of The Iv International Conference

Computer Algebra In Physical Research: Memorial Volume For N N Govorun - Proceedings Of The Iv International Conference

Author: V A Rostovtsev

Publisher: #N/A

Published: 1991-12-11

Total Pages: 467

ISBN-13: 9814556092

DOWNLOAD EBOOK

Professor Nicholas N Govorun, corresponding member of the USSR Academy of Sciences, was the principal organizer of the precedent meetings held at Dubna (1979, 1983, 1985). Unfortunately, he passed away in 1989. This volume is to honor his support in Computer Algebra.This is perhaps the only meeting of the entire soviet union computer algebra community and foreign scientists. The meeting presented scientific results, plans for research facilities, and status reports of the basic areas of investigations. The fields covered include computer algebra systems and general algorithms as well as applied algorithms, programs and results in computer algebra applications (mainly in physics).


Mathematics for Physical Science and Engineering

Mathematics for Physical Science and Engineering

Author: Frank E. Harris

Publisher: Academic Press

Published: 2014-05-24

Total Pages: 787

ISBN-13: 0128010495

DOWNLOAD EBOOK

Mathematics for Physical Science and Engineering is a complete text in mathematics for physical science that includes the use of symbolic computation to illustrate the mathematical concepts and enable the solution of a broader range of practical problems. This book enables professionals to connect their knowledge of mathematics to either or both of the symbolic languages Maple and Mathematica. The book begins by introducing the reader to symbolic computation and how it can be applied to solve a broad range of practical problems. Chapters cover topics that include: infinite series; complex numbers and functions; vectors and matrices; vector analysis; tensor analysis; ordinary differential equations; general vector spaces; Fourier series; partial differential equations; complex variable theory; and probability and statistics. Each important concept is clarified to students through the use of a simple example and often an illustration. This book is an ideal reference for upper level undergraduates in physical chemistry, physics, engineering, and advanced/applied mathematics courses. It will also appeal to graduate physicists, engineers and related specialties seeking to address practical problems in physical science. - Clarifies each important concept to students through the use of a simple example and often an illustration - Provides quick-reference for students through multiple appendices, including an overview of terms in most commonly used applications (Mathematica, Maple) - Shows how symbolic computing enables solving a broad range of practical problems


Physics with MAPLE

Physics with MAPLE

Author: Frank Y. Wang

Publisher: John Wiley & Sons

Published: 2008-09-26

Total Pages: 625

ISBN-13: 3527618945

DOWNLOAD EBOOK

Written by an experienced physicist who is active in applying computer algebra to relativistic astrophysics and education, this is the resource for mathematical methods in physics using MapleTM and MathematicaTM. Through in-depth problems from core courses in the physics curriculum, the author guides students to apply analytical and numerical techniques in mathematical physics, and present the results in interactive graphics. Around 180 simulating exercises are included to facilitate learning by examples. This book is a must-have for students of physics, electrical and mechanical engineering, materials scientists, lecturers in physics, and university libraries. * Free online MapleTM material at http://www.wiley-vch.de/templates/pdf/maplephysics.zip * Free online MathematicaTM material at http://www.wiley-vch.de/templates/pdf/physicswithmathematica.zip * Solutions manual for lecturers available at www.wiley-vch.de/supplements/


Modern Computer Algebra

Modern Computer Algebra

Author: Joachim von zur Gathen

Publisher: Cambridge University Press

Published: 2013-04-25

Total Pages: 811

ISBN-13: 1107039037

DOWNLOAD EBOOK

Now in its third edition, this highly successful textbook is widely regarded as the 'bible of computer algebra'.


Applications of Computer Algebra

Applications of Computer Algebra

Author: Ilias S. Kotsireas

Publisher: Springer

Published: 2017-07-26

Total Pages: 513

ISBN-13: 3319569325

DOWNLOAD EBOOK

The Applications of Computer Algebra (ACA) conference covers a wide range of topics from Coding Theory to Differential Algebra to Quantam Computing, focusing on the interactions of these and other areas with the discipline of Computer Algebra. This volume provides the latest developments in the field as well as its applications in various domains, including communications, modelling, and theoretical physics. The book will appeal to researchers and professors of computer algebra, applied mathematics, and computer science, as well as to engineers and computer scientists engaged in research and development.


Analysis of Dirac Systems and Computational Algebra

Analysis of Dirac Systems and Computational Algebra

Author: Fabrizio Colombo

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 344

ISBN-13: 0817681663

DOWNLOAD EBOOK

* The main treatment is devoted to the analysis of systems of linear partial differential equations (PDEs) with constant coefficients, focusing attention on null solutions of Dirac systems * All the necessary classical material is initially presented * Geared toward graduate students and researchers in (hyper)complex analysis, Clifford analysis, systems of PDEs with constant coefficients, and mathematical physics


Computer Algebra in Scientific Computing

Computer Algebra in Scientific Computing

Author: François Boulier

Publisher: Springer Nature

Published: 2020-10-17

Total Pages: 644

ISBN-13: 3030600262

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 22nd International Workshop on Computer Algebra in Scientific Computing, CASC 2020, held in Linz, Austria, in September 2020. The conference was held virtually due to the COVID-19 pandemic. The 34 full papers presented together with 2 invited talks were carefully reviewed and selected from 41 submissions. They deal with cutting-edge research in all major disciplines of computer algebra. The papers cover topics such as polynomial algebra, symbolic and symbolic-numerical computation, applications of symbolic computation for investigating and solving ordinary differential equations, applications of CAS in the investigation and solution of celestial mechanics problems, and in mechanics, physics, and robotics.


Geometric Algebra for Computer Science

Geometric Algebra for Computer Science

Author: Leo Dorst

Publisher: Elsevier

Published: 2010-07-26

Total Pages: 664

ISBN-13: 0080553109

DOWNLOAD EBOOK

Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA


Computer Algebra Recipes

Computer Algebra Recipes

Author: Richard H. Enns

Publisher: Springer Science & Business Media

Published: 2006-03-15

Total Pages: 436

ISBN-13: 0387257675

DOWNLOAD EBOOK

* Contains computer algebra worksheets or "recipes" designed using MAPLE (System 10); no prior knowledge of MAPLE is assumed * Effective computational science text for first- and second-year undergraduates in mathematics, physics, engineering, chemistry, economics, biology, and pre-medicine * Examples and problems provide basis for both self-study and on-line course