This presentation, Progress of Computer-Aided Engineering of Electric Drive Vehicle Batteries (CAEBAT) is about simulation and computer-aided engineering (CAE) tools that are widely used to speed up the research and development cycle and reduce the number of build-and-break steps, particularly in the automotive industry. Realizing this, DOE?s Vehicle Technologies Program initiated the CAEBATproject in April 2010 to develop a suite of software tools for designing batteries.
This edited volume, with contributions from the Computer Aided Engineering for Batteries (CAEBAT) program, provides firsthand insights into nuances of implementing battery models in actual geometries. It discusses practical examples and gaps in our understanding, while reviewing in depth the theoretical background and algorithms. Over the last ten years, several world-class academics, automotive original equipment manufacturers (OEMs), battery cell manufacturers and software developers worked together under an effort initiated by the U.S. Department of Energy to develop mature, validated modeling tools to simulate design, performance, safety and life of automotive batteries. Until recently, battery modeling was a niche focus area with a relatively small number of experts. This book opens up the research topic for a broader audience from industry and academia alike. It is a valuable resource for anyone who works on battery engineering but has limited hands-on experience with coding.
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.Thoroughly revised, comprehensive coverage of battery technology, characteristics, and applicationsThis fully updated guide offers complete coverage of batteries and battery usage―from classic designs to emerging technologies. Compiled by a pioneer in secondary lithium batteries, the book contains all the information needed to solve engineering problems and make proper battery selections. You will get in-depth descriptions of the principles, properties, and performance specifications of every major battery type. Linden’s Handbook of Batteries, Fifth Edition, contains cutting-edge data and equations, design specifications, and troubleshooting techniques from international experts. New chapters discuss renewable energy systems, battery failure analysis, lithium-ion battery technology, materials, and component design. Recent advances in smartphones and hybrid car batteries are clearly explained, including maximizing re-chargeability, reducing cost, improving safety, and lessening environmental impact.Coverage includes:•Electricity, electrochemistry, and batteries•Raw materials•Battery components•Principles of electrochemical cell operations•Battery product overview•Electrochemical cell designs (platform technologies)•Primary batteries•Secondary batteries•Miscellaneous and specialty batteries•Battery applications•Battery industry infrastructure
The Handbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types and Terminology,?Second Edition provides a clear and concise explanation of EV and Li-ion batteries for readers that are new to the field. The second edition expands and updates all topics covered in the original book, adding more details to all existing chapters and including major updates to align with all of the rapid changes the industry has experienced over the past few years. This handbook offers a layman's explanation of the history of vehicle electrification and battery technology, describing the various terminology and acronyms and explaining how to do simple calculations that can be used in determining basic battery sizing, capacity, voltage, and energy. By the end of this book the reader will have a solid understanding of the terminology around Li-ion batteries and be able to undertake simple battery calculations. The book is immensely useful to beginning and experienced engineers alike who are moving into the battery field. Li-ion batteries are one of the most unique systems in automobiles today in that they combine multiple engineering disciplines, yet most engineering programs focus on only a single engineering field. This book provides the reader with a reference to the history, terminology and design criteria needed to understand the Li-ion battery and to successfully lay out a new battery concept. Whether you are an electrical engineer, a mechanical engineer or a chemist, this book will help you better appreciate the inter-relationships between the various battery engineering fields that are required to understand the battery as an Energy Storage System. It gives great insights for readers ranging from engineers to sales, marketing, management, leadership, investors, and government officials. - Adds a brief history of battery technology and its evolution to current technologies? - Expands and updates the chemistry to include the latest types - Discusses thermal runaway and cascading failure mitigation technologies? - Expands and updates the descriptions of the battery module and pack components and systems?? - Adds description of the manufacturing processes for cells, modules, and packs? - Introduces and discusses new topics such as battery-as-a-service, cell to pack and cell to chassis designs, and wireless BMS?
This presentation introduces physics-based models of batteries and software toolsets, including those developed by the U.S. Department of Energy's (DOE) Computer-Aided Engineering for Electric-Drive Vehicle Batteries Program (CAEBAT). The presentation highlights achievements and gaps in model-based tools for materials-to-systems design, lifetime prediction and control.
This 2012 Annual Merit Review presentation gives an overview of the Computer-Aided Engineering of Batteries (CAEBAT) project and introduces the Multi-Scale, Multi-Dimensional model for modeling lithium-ion batteries for electric vehicles.
This volume collects selected papers of the 5th CESA Automotive Electronics Congress, Paris, 2018. CESA is the most important automotive electronics conference in France. The topical focus lies on state-of-the-art automotive electronics with respect to energy consumption and autonomous driving. The target audience primarily comprises industry leaders and research experts in the automotive industry.
This presentation describes the current status of the DOE's Energy Storage R&D program, including modeling and design tools and the Computer-Aided Engineering for Automotive Batteries (CAEBAT) program.
This book examines the latest research results from combined multi-component and multi-scale explorations. It provides theory, considers underlying numerical methods and presents brilliant computational experimentation. Engineering computations featured in this monograph further offer particular interest to many researchers, engineers and computational scientists working in frontier modeling and applications of multicomponent and multiscale problems. Professor Geiser gives specific attention to the aspects of decomposing and splitting delicate structures and controlling decomposition and the rationale behind many important applications of multi-component and multi-scale analysis. Multicomponent and Multiscale Systems: Theory, Methods and Applications in Engineering also considers the question of why iterative methods can be powerful and more appropriate for well-balanced multiscale and multicomponent coupled nonlinear problems. The book is ideal for engineers and scientists working in theoretical and applied areas.