Computational Statistical Physics

Computational Statistical Physics

Author: Lucas Böttcher

Publisher: Cambridge University Press

Published: 2021-08-26

Total Pages: 275

ISBN-13: 9781108841429

DOWNLOAD EBOOK

Providing a detailed and pedagogical account of the rapidly-growing field of computational statistical physics, this book covers both the theoretical foundations of equilibrium and non-equilibrium statistical physics, and also modern, computational applications such as percolation, random walks, magnetic systems, machine learning dynamics, and spreading processes on complex networks. A detailed discussion of molecular dynamics simulations is also included, a topic of great importance in biophysics and physical chemistry. The accessible and self-contained approach adopted by the authors makes this book suitable for teaching courses at graduate level, and numerous worked examples and end of chapter problems allow students to test their progress and understanding.


Computational Statistical Mechanics

Computational Statistical Mechanics

Author: W.G. Hoover

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 330

ISBN-13: 0444596593

DOWNLOAD EBOOK

Computational Statistical Mechanics describes the use of fast computers to simulate the equilibrium and nonequilibrium properties of gases, liquids, and solids at, and away from equilibrium. The underlying theory is developed from basic principles and illustrated by applying it to the simplest possible examples. Thermodynamics, based on the ideal gas thermometer, is related to Gibb's statistical mechanics through the use of Nosé-Hoover heat reservoirs. These reservoirs use integral feedback to control temperature. The same approach is carried through to the simulation and analysis of nonequilibrium mass, momentum, and energy flows. Such a unified approach makes possible consistent mechanical definitions of temperature, stress, and heat flux which lead to a microscopic demonstration of the Second Law of Thermodynamics directly from mechanics. The intimate connection linking Lyapunov-unstable microscopic motions to macroscopic dissipative flows through multifractal phase-space structures is illustrated with many examples from the recent literature. The book is well-suited for undergraduate courses in advanced thermodynamics, statistical mechanic and transport theory, and graduate courses in physics and chemistry.


Computational Complexity and Statistical Physics

Computational Complexity and Statistical Physics

Author: Allon Percus

Publisher: Oxford University Press, USA

Published: 2006

Total Pages: 394

ISBN-13: 9780195177374

DOWNLOAD EBOOK

Computer science and physics have been closely linked since the birth of modern computing. In recent years, an interdisciplinary area has blossomed at the junction of these fields, connecting insights from statistical physics with basic computational challenges. Researchers have successfully applied techniques from the study of phase transitions to analyze NP-complete problems such as satisfiability and graph coloring. This is leading to a new understanding of the structure of these problems, and of how algorithms perform on them. Computational Complexity and Statistical Physics will serve as a standard reference and pedagogical aid to statistical physics methods in computer science, with a particular focus on phase transitions in combinatorial problems. Addressed to a broad range of readers, the book includes substantial background material along with current research by leading computer scientists, mathematicians, and physicists. It will prepare students and researchers from all of these fields to contribute to this exciting area.


Computational Statistical Physics

Computational Statistical Physics

Author: Lucas Böttcher

Publisher: Cambridge University Press

Published: 2021-08-26

Total Pages: 274

ISBN-13: 1108896650

DOWNLOAD EBOOK

Providing a detailed and pedagogical account of the rapidly-growing field of computational statistical physics, this book covers both the theoretical foundations of equilibrium and non-equilibrium statistical physics, and also modern, computational applications such as percolation, random walks, magnetic systems, machine learning dynamics, and spreading processes on complex networks. A detailed discussion of molecular dynamics simulations is also included, a topic of great importance in biophysics and physical chemistry. The accessible and self-contained approach adopted by the authors makes this book suitable for teaching courses at graduate level, and numerous worked examples and end of chapter problems allow students to test their progress and understanding.


Computational Statistical Physics

Computational Statistical Physics

Author: K.-H. Hoffmann

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 312

ISBN-13: 3662048043

DOWNLOAD EBOOK

In recent years statistical physics has made significant progress as a result of advances in numerical techniques. While good textbooks exist on the general aspects of statistical physics, the numerical methods and the new developments based on large-scale computing are not usually adequately presented. In this book 16 experts describe the application of methods of statistical physics to various areas in physics such as disordered materials, quasicrystals, semiconductors, and also to other areas beyond physics, such as financial markets, game theory, evolution, and traffic planning, in which statistical physics has recently become significant. In this way the universality of the underlying concepts and methods such as fractals, random matrix theory, time series, neural networks, evolutionary algorithms, becomes clear. The topics are covered by introductory, tutorial presentations.


Statistical Mechanics: Algorithms and Computations

Statistical Mechanics: Algorithms and Computations

Author: Werner Krauth

Publisher: Oxford University Press, USA

Published: 2006-09-14

Total Pages: 355

ISBN-13: 0198515367

DOWNLOAD EBOOK

This book discusses the computational approach in modern statistical physics in a clear and accessible way and demonstrates its close relation to other approaches in theoretical physics. Individual chapters focus on subjects as diverse as the hard sphere liquid, classical spin models, single quantum particles and Bose-Einstein condensation. Contained within the chapters are in-depth discussions of algorithms, ranging from basic enumeration methods to modern Monte Carlo techniques. The emphasis is on orientation, with discussion of implementation details kept to a minimum. Illustrations, tables and concise printed algorithms convey key information, making the material very accessible. The book is completely self-contained and graphs and tables can readily be reproduced, requiring minimal computer code. Most sections begin at an elementary level and lead on to the rich and difficult problems of contemporary computational and statistical physics. The book will be of interest to a wide range of students, teachers and researchers in physics and the neighbouring sciences. An accompanying CD allows incorporation of the book's content (illustrations, tables, schematic programs) into the reader's own presentations.


Computational statistical physics

Computational statistical physics

Author: Sitangshu Bikas Santra

Publisher: Hindustan Book Agency

Published: 2011-07-15

Total Pages: 0

ISBN-13: 9789380250151

DOWNLOAD EBOOK

The present book is an outcome of the SERC school on Computational Statistical Physics held at the Indian Institute of Technology, Guwahati, in December 2008. Numerical experimentation has played an extremely important role in statistical physics in recent years. Lectures given at the School covered a large number of topics of current and continuing interest. Based on lectures by active researchers in the field- Bikas Chakrabarti, S Chaplot, Deepak Dhar, Sanjay Kumar, Prabal Maiti, Sanjay Puri, Purusattam Ray, Sitangshu Santra and Subir Sarkar- the nine chapters comprising the book deal with topics that range from the fundamentals of the field, to problems and questions that are at the very forefront of current research. This book aims to expose the graduate student to the basic as well as advanced techniques in computational statistical physics. Following a general introduction to statistical mechanics and critical phenomena, the various chapters cover Monte Carlo and molecular dynamics simulation methodology, along with a variety of applications. These include the study of coarsening phenomena and diffusion in zeolites. /p In addition, graphical enumeration techniques are covered in detail with applications to percolation and polymer physics, and methods for optimisation are also discussed. Beginning graduate students and young researchers in the area of statistical physics will find the book useful. In addition, this will also be a valuable general reference for students and researchers in other areas of science and engineering.


Computational Many-Particle Physics

Computational Many-Particle Physics

Author: Holger Fehske

Publisher: Springer

Published: 2007-12-10

Total Pages: 774

ISBN-13: 3540746862

DOWNLOAD EBOOK

Looking for the real state of play in computational many-particle physics? Look no further. This book presents an overview of state-of-the-art numerical methods for studying interacting classical and quantum many-particle systems. A broad range of techniques and algorithms are covered, and emphasis is placed on their implementation on modern high-performance computers. This excellent book comes complete with online files and updates allowing readers to stay right up to date.


Evolution, Money, War, and Computers

Evolution, Money, War, and Computers

Author: Paulo Murilo C. de Oliveira

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 156

ISBN-13: 3322910091

DOWNLOAD EBOOK

This book for physicists, biologists, computer scientists, economists or social scientists shows in selected examples how computer simulation methods which are typical to statistical physics have been applied in other areas outside of physics. Our main part deals with the biology of ageing, while other examples are the functioning of the immune system, the structure of DNA, the fluctuations on the stock market, theories for sociology and for World War II. Are leaky water faucets similar to our heartbeats? Throughout the book we emphasize microscopic models dealing with the action of individuals, whether they are cells of the immune system or traders speculating on the currency market. Complete computer programs are given and explained for biological ageing. The references try to introduce the expert from the covered other fields to the relevant physics literature; and they also show the physicists the way into the biological literature on ageing.


Computational Biology

Computational Biology

Author: Ralf Blossey

Publisher: CRC Press

Published: 2006-05-25

Total Pages: 276

ISBN-13: 1420010786

DOWNLOAD EBOOK

Quantitative methods have a particular knack for improving any field they touch. For biology, computational techniques have led to enormous strides in our understanding of biological systems, but there is still vast territory to cover. Statistical physics especially holds great potential for elucidating the structural-functional relationships in bi