Computational Probability

Computational Probability

Author: Winfried K. Grassmann

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 488

ISBN-13: 1475748280

DOWNLOAD EBOOK

Great advances have been made in recent years in the field of computational probability. In particular, the state of the art - as it relates to queuing systems, stochastic Petri-nets and systems dealing with reliability - has benefited significantly from these advances. The objective of this book is to make these topics accessible to researchers, graduate students, and practitioners. Great care was taken to make the exposition as clear as possible. Every line in the book has been evaluated, and changes have been made whenever it was felt that the initial exposition was not clear enough for the intended readership. The work of major research scholars in this field comprises the individual chapters of Computational Probability. The first chapter describes, in nonmathematical terms, the challenges in computational probability. Chapter 2 describes the methodologies available for obtaining the transition matrices for Markov chains, with particular emphasis on stochastic Petri-nets. Chapter 3 discusses how to find transient probabilities and transient rewards for these Markov chains. The next two chapters indicate how to find steady-state probabilities for Markov chains with a finite number of states. Both direct and iterative methods are described in Chapter 4. Details of these methods are given in Chapter 5. Chapters 6 and 7 deal with infinite-state Markov chains, which occur frequently in queueing, because there are times one does not want to set a bound for all queues. Chapter 8 deals with transforms, in particular Laplace transforms. The work of Ward Whitt and his collaborators, who have recently developed a number of numerical methods for Laplace transform inversions, is emphasized in this chapter. Finally, if one wants to optimize a system, one way to do the optimization is through Markov decision making, described in Chapter 9. Markov modeling has found applications in many areas, three of which are described in detail: Chapter 10 analyzes discrete-time queues, Chapter 11 describes networks of queues, and Chapter 12 deals with reliability theory.


Computational Probability

Computational Probability

Author: John H. Drew

Publisher: Springer Science & Business Media

Published: 2008-01-08

Total Pages: 220

ISBN-13: 0387746765

DOWNLOAD EBOOK

This title organizes computational probability methods into a systematic treatment. The book examines two categories of problems. "Algorithms for Continuous Random Variables" covers data structures and algorithms, transformations of random variables, and products of independent random variables. "Algorithms for Discrete Random Variables" discusses data structures and algorithms, sums of independent random variables, and order statistics.


Computational Probability

Computational Probability

Author: P. M. Kahn

Publisher: Elsevier

Published: 2014-05-10

Total Pages: 353

ISBN-13: 148327361X

DOWNLOAD EBOOK

Computational Probability is a collection of papers presented at the Actuarial Research Conference on Computational Probability and related topics, held at Brown University on August 28-30, 1975. This 19-chapter book explores the development of computational techniques in probability and statistics and their application to problems in insurance. It covers six general topics, including computational probability, computational statistics, computational risk theory, analysis of algorithms, numerical methods, and notation and computation. Applications covered both life and nonlife insurance. This book will prove useful to applied mathematicians, statisticians, and computer scientists.


Digital Dice

Digital Dice

Author: Paul J. Nahin

Publisher: Princeton University Press

Published: 2008

Total Pages: 288

ISBN-13: 9780691126982

DOWNLOAD EBOOK

A collection of twenty-one real-life probability puzzles and shows how to get numerical answers without having to solve complicated mathematical equations.


Computational Probability and Mathematical Modeling

Computational Probability and Mathematical Modeling

Author: José Roberto Cantú-González

Publisher: Frontiers Media SA

Published: 2019-12-24

Total Pages: 71

ISBN-13: 288963244X

DOWNLOAD EBOOK

In the present time, two of the most important approaches to tackle complex systems are probability and stochastic processes theory. Still from an analytic perspective, modeling and solving a problem using a stochastic approach is not a trivial issue, hence, a combination of the logic of probabilistic reasoning with computational science is needed to obtain qualitatively good solutions in a reasonable time. This eBook presents an interesting view of applications associated to fields of probability, statistics, and mathematic modeling, all of them supported by a computational context though the approach of stochasticity and simulation used in most of them. This collection contains three chapters, which bring applications in fields of biology, finance and physics, each chapter contains work(s) with specific applications. An editorial is also contained with a summarized version of each work, and each of them are widely explained in a specific section, which include a state of art to support the nature of the individual research, a methodology to solve the defined problem and the results and conclusions. We hope the present eBook can represent a potential source of knowledge for the academic community of implicated disciplines, and an inspirational starting point of starting for scientists in the amazing world of applied mathematics and the search to solve complex problems


Computational Probability Applications

Computational Probability Applications

Author: Andrew G. Glen

Publisher: Springer

Published: 2016-12-01

Total Pages: 258

ISBN-13: 3319433172

DOWNLOAD EBOOK

This focuses on the developing field of building probability models with the power of symbolic algebra systems. The book combines the uses of symbolic algebra with probabilistic/stochastic application and highlights the applications in a variety of contexts. The research explored in each chapter is unified by the use of A Probability Programming Language (APPL) to achieve the modeling objectives. APPL, as a research tool, enables a probabilist or statistician the ability to explore new ideas, methods, and models. Furthermore, as an open-source language, it sets the foundation for future algorithms to augment the original code. Computational Probability Applications is comprised of fifteen chapters, each presenting a specific application of computational probability using the APPL modeling and computer language. The chapter topics include using inverse gamma as a survival distribution, linear approximations of probability density functions, and also moment-ratio diagrams for univariate distributions. These works highlight interesting examples, often done by undergraduate students and graduate students that can serve as templates for future work. In addition, this book should appeal to researchers and practitioners in a range of fields including probability, statistics, engineering, finance, neuroscience, and economics.


Analytical and Computational Methods in Probability Theory

Analytical and Computational Methods in Probability Theory

Author: Vladimir V. Rykov

Publisher: Springer

Published: 2017-12-21

Total Pages: 551

ISBN-13: 3319715046

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the First International Conference on Analytical and Computational Methods in Probability Theory and its Applications, ACMPT 2017, held in Moscow, Russia, in October 2017. The 42 full papers presented were carefully reviewed and selected from 173 submissions. The conference program consisted of four main themes associated with significant contributions made by A.D.Soloviev. These are: Analytical methods in probability theory, Computational methods in probability theory, Asymptotical methods in probability theory, the history of mathematics.


Intermediate Probability

Intermediate Probability

Author: Marc S. Paolella

Publisher: John Wiley & Sons

Published: 2007-09-27

Total Pages: 430

ISBN-13: 9780470035054

DOWNLOAD EBOOK

Intermediate Probability is the natural extension of the author's Fundamental Probability. It details several highly important topics, from standard ones such as order statistics, multivariate normal, and convergence concepts, to more advanced ones which are usually not addressed at this mathematical level, or have never previously appeared in textbook form. The author adopts a computational approach throughout, allowing the reader to directly implement the methods, thus greatly enhancing the learning experience and clearly illustrating the applicability, strengths, and weaknesses of the theory. The book: Places great emphasis on the numeric computation of convolutions of random variables, via numeric integration, inversion theorems, fast Fourier transforms, saddlepoint approximations, and simulation. Provides introductory material to required mathematical topics such as complex numbers, Laplace and Fourier transforms, matrix algebra, confluent hypergeometric functions, digamma functions, and Bessel functions. Presents full derivation and numerous computational methods of the stable Paretian and the singly and doubly non-central distributions. A whole chapter is dedicated to mean-variance mixtures, NIG, GIG, generalized hyperbolic and numerous related distributions. A whole chapter is dedicated to nesting, generalizing, and asymmetric extensions of popular distributions, as have become popular in empirical finance and other applications. Provides all essential programming code in Matlab and R. The user-friendly style of writing and attention to detail means that self-study is easily possible, making the book ideal for senior undergraduate and graduate students of mathematics, statistics, econometrics, finance, insurance, and computer science, as well as researchers and professional statisticians working in these fields.


Probability and Computing

Probability and Computing

Author: Michael Mitzenmacher

Publisher: Cambridge University Press

Published: 2005-01-31

Total Pages: 372

ISBN-13: 9780521835404

DOWNLOAD EBOOK

Randomization and probabilistic techniques play an important role in modern computer science, with applications ranging from combinatorial optimization and machine learning to communication networks and secure protocols. This 2005 textbook is designed to accompany a one- or two-semester course for advanced undergraduates or beginning graduate students in computer science and applied mathematics. It gives an excellent introduction to the probabilistic techniques and paradigms used in the development of probabilistic algorithms and analyses. It assumes only an elementary background in discrete mathematics and gives a rigorous yet accessible treatment of the material, with numerous examples and applications. The first half of the book covers core material, including random sampling, expectations, Markov's inequality, Chevyshev's inequality, Chernoff bounds, the probabilistic method and Markov chains. The second half covers more advanced topics such as continuous probability, applications of limited independence, entropy, Markov chain Monte Carlo methods and balanced allocations. With its comprehensive selection of topics, along with many examples and exercises, this book is an indispensable teaching tool.


High-Dimensional Probability

High-Dimensional Probability

Author: Roman Vershynin

Publisher: Cambridge University Press

Published: 2018-09-27

Total Pages: 299

ISBN-13: 1108415199

DOWNLOAD EBOOK

An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.