Computational Physics And Cellular Automata - Proceedings Of The Workshop
Author: David P Landau
Publisher: World Scientific
Published: 1990-07-04
Total Pages: 207
ISBN-13: 981472503X
DOWNLOAD EBOOKRead and Download eBook Full
Author: David P Landau
Publisher: World Scientific
Published: 1990-07-04
Total Pages: 207
ISBN-13: 981472503X
DOWNLOAD EBOOKAuthor: Howard Gutowitz
Publisher: MIT Press
Published: 1991
Total Pages: 510
ISBN-13: 9780262570862
DOWNLOAD EBOOKThe thirty four contributions in this book cover many aspects of contemporary studies on cellular automata and include reviews, research reports, and guides to recent literature and available software. Cellular automata, dynamic systems in which space and time are discrete, are yielding interesting applications in both the physical and natural sciences. The thirty four contributions in this book cover many aspects of contemporary studies on cellular automata and include reviews, research reports, and guides to recent literature and available software. Chapters cover mathematical analysis, the structure of the space of cellular automata, learning rules with specified properties: cellular automata in biology, physics, chemistry, and computation theory; and generalizations of cellular automata in neural nets, Boolean nets, and coupled map lattices.Current work on cellular automata may be viewed as revolving around two central and closely related problems: the forward problem and the inverse problem. The forward problem concerns the description of properties of given cellular automata. Properties considered include reversibility, invariants, criticality, fractal dimension, and computational power. The role of cellular automata in computation theory is seen as a particularly exciting venue for exploring parallel computers as theoretical and practical tools in mathematical physics. The inverse problem, an area of study gaining prominence particularly in the natural sciences, involves designing rules that possess specified properties or perform specified task. A long-term goal is to develop a set of techniques that can find a rule or set of rules that can reproduce quantitative observations of a physical system. Studies of the inverse problem take up the organization and structure of the set of automata, in particular the parameterization of the space of cellular automata. Optimization and learning techniques, like the genetic algorithm and adaptive stochastic cellular automata are applied to find cellular automaton rules that model such physical phenomena as crystal growth or perform such adaptive-learning tasks as balancing an inverted pole.Howard Gutowitz is Collaborateur in the Service de Physique du Solide et Résonance Magnetique, Commissariat a I'Energie Atomique, Saclay, France.
Author:
Publisher:
Published: 1992
Total Pages: 360
ISBN-13:
DOWNLOAD EBOOKAuthor: Andrew Ilachinski
Publisher: World Scientific
Published: 2001
Total Pages: 844
ISBN-13: 9789812381835
DOWNLOAD EBOOKCellular automata are a class of spatially and temporally discrete mathematical systems characterized by local interaction and synchronous dynamical evolution. Introduced by the mathematician John von Neumann in the 1950s as simple models of biological self-reproduction, they are prototypical models for complex systems and processes consisting of a large number of simple, homogeneous, locally interacting components. Cellular automata have been the focus of great attention over the years because of their ability to generate a rich spectrum of very complex patterns of behavior out of sets of relatively simple underlying rules. Moreover, they appear to capture many essential features of complex self-organizing cooperative behavior observed in real systems.This book provides a summary of the basic properties of cellular automata, and explores in depth many important cellular-automata-related research areas, including artificial life, chaos, emergence, fractals, nonlinear dynamics, and self-organization. It also presents a broad review of the speculative proposition that cellular automata may eventually prove to be theoretical harbingers of a fundamentally new information-based, discrete physics. Designed to be accessible at the junior/senior undergraduate level and above, the book will be of interest to all students, researchers, and professionals wanting to learn about order, chaos, and the emergence of complexity. It contains an extensive bibliography and provides a listing of cellular automata resources available on the World Wide Web.
Author: M Pettini
Publisher: World Scientific
Published: 1991-10-31
Total Pages: 237
ISBN-13: 9814569720
DOWNLOAD EBOOKThis workshop in nonlinear dynamics and mathematical physics, organized by the Italian Nuclear Energy Agency (ENEA) in Bologna, is intended to give an updated overview of modern trends in the field of nonlinear dynamics with emphasis on applications to physics, quantum theory, plasma physics and fluid dynamics, optics and electrodynamics, computer simulation and neural networks.
Author: Dietrich Stauffer
Publisher: World Scientific
Published: 1995-10-01
Total Pages: 304
ISBN-13: 9789810225063
DOWNLOAD EBOOKThis series of books covers all areas of computational physics, collecting together reviews where a newcomer can learn about the state of the art regarding methods and results. Articles are submitted by e-mail before deadlines which are kept by the editor.Biologically motivated simulations, glasses, world-record molecular dynamics, deposition on surfaces, and hydrodynamics are discussed in this volume which ends with an explanation of elementary particle physics (QCD) and their phase transitions.
Author: Paul Smolensky
Publisher: Psychology Press
Published: 2013-05-13
Total Pages: 865
ISBN-13: 1134772947
DOWNLOAD EBOOKRecent years have seen an explosion of new mathematical results on learning and processing in neural networks. This body of results rests on a breadth of mathematical background which even few specialists possess. In a format intermediate between a textbook and a collection of research articles, this book has been assembled to present a sample of these results, and to fill in the necessary background, in such areas as computability theory, computational complexity theory, the theory of analog computation, stochastic processes, dynamical systems, control theory, time-series analysis, Bayesian analysis, regularization theory, information theory, computational learning theory, and mathematical statistics. Mathematical models of neural networks display an amazing richness and diversity. Neural networks can be formally modeled as computational systems, as physical or dynamical systems, and as statistical analyzers. Within each of these three broad perspectives, there are a number of particular approaches. For each of 16 particular mathematical perspectives on neural networks, the contributing authors provide introductions to the background mathematics, and address questions such as: * Exactly what mathematical systems are used to model neural networks from the given perspective? * What formal questions about neural networks can then be addressed? * What are typical results that can be obtained? and * What are the outstanding open problems? A distinctive feature of this volume is that for each perspective presented in one of the contributed chapters, the first editor has provided a moderately detailed summary of the formal results and the requisite mathematical concepts. These summaries are presented in four chapters that tie together the 16 contributed chapters: three develop a coherent view of the three general perspectives -- computational, dynamical, and statistical; the other assembles these three perspectives into a unified overview of the neural networks field.
Author: Charles J Lumsden
Publisher: World Scientific
Published: 1997-04-19
Total Pages: 506
ISBN-13: 981454633X
DOWNLOAD EBOOKWhat is the physics of life and why does it matter? The essays in this book probe this question, celebrating modern biology's vibrant dialog with theoretical physics — a scientific adventure in which biological understanding is enriched by physical theory without losing its own inherent traditions and perspectives. The book explores organic complexity and self-organization through research applications to embryology, cell biology, behavioral neuroscience, and evolution. The essays will excite the interest of physics students in thinking about biology's “grand challenges”, in part by means of self-contained introductions to theoretical computer science, symmetry methods in bifurcation theory, and evolutionary games. Seasoned investigators in both the physical and life sciences will also find challenging ideas and applications presented in this volume.This is a Print On Demand title. We no longer stock the original but will recreate a copy for you. While all efforts are made to ensure that quality is the same as the original, there may be differences in some areas of the design and packaging.
Author: Takeyuki Hida
Publisher: World Scientific
Published: 2004-10-28
Total Pages: 469
ISBN-13: 9814481750
DOWNLOAD EBOOKQuantum information is a developing multi-disciplinary field, with many exciting links to white noise theory. This connection is explored and presented in this work, which effectively bridges the gap between quantum information theory and complex systems. Arising from the Meijo Winter School and International Conference, the lecture notes and research papers published in this timely volume will have a significant impact on the future development of the theories of quantum information and complexity. This book will be of interest to mathematicians, physicists, computer scientists as well as electrical engineers working in this field.
Author: Heike Emmerich
Publisher: Springer Science & Business Media
Published: 2013-03-09
Total Pages: 450
ISBN-13: 3662079690
DOWNLOAD EBOOKAn overview of the recent progress of research in computational physics and materials science. Particular topics are modelling of traffic flow and complex multi-scale solidification phenomena. The sections introduce novel research results of experts from a considerable diversity of disciplines such as physics, mathematical and computational modelling, nonlinear dynamics, materials sciences, statistical mechanics and foundry technique. The book intends to create a comprehensive and coherent image of the current research status and illustrates new simulation results of transport and interface dynamics by high resolution graphics. Various possible perspectives are formulated for future activities. Special emphasis is laid on exchanging experiences concerning numerical tools and on the bridging of the scales as is necessary in a variety of scientific and engineering applications. An interesting possibility along this line was the coupling of different computational approaches leading to hybrid simulations.