The CNS meetings bring together computational neuroscientists representing many different fields and backgrounds as well as many different experimental preparations and theoretical approaches. The papers published here range from pure experimental neurobiology, to neuro-ethology, mathematics, physics, and engineering. In all cases the research described is focused on understanding how nervous systems compute. The actual subjects of the research include a highly diverse number of preparations, modeling approaches and analysis techniques. Accordingly, this volume reflects the breadth and depth of current research in computational neuroscience taking place throughout the world.
We present in this volume the collection of finally accepted papers of the eighth edition of the “IWANN” conference (“International Work-Conference on Artificial Neural Networks”). This biennial meeting focuses on the foundations, theory, models and applications of systems inspired by nature (neural networks, fuzzy logic and evolutionary systems). Since the first edition of IWANN in Granada (LNCS 540, 1991), the Artificial Neural Network (ANN) community, and the domain itself, have matured and evolved. Under the ANN banner we find a very heterogeneous scenario with a main interest and objective: to better understand nature and beings for the correct elaboration of theories, models and new algorithms. For scientists, engineers and professionals working in the area, this is a very good way to get solid and competitive applications. We are facing a real revolution with the emergence of embedded intelligence in many artificial systems (systems covering diverse fields: industry, domotics, leisure, healthcare, ... ). So we are convinced that an enormous amount of work must be, and should be, still done. Many pieces of the puzzle must be built and placed into their proper positions, offering us new and solid theories and models (necessary tools) for the application and praxis of these current paradigms. The above-mentioned concepts were the main reason for the subtitle of the IWANN 2005 edition: “Computational Intelligence and Bioinspired Systems.” The call for papers was launched several months ago, addressing the following topics: 1. Mathematical and theoretical methods in computational intelligence.
This book constitutes the refereed proceedings of the 9th International Work-Conference on Artificial Neural Networks, IWANN 2007, held in San Sebastián, Spain in June 2007. Coverage includes theoretical concepts and neurocomputational formulations, evolutionary and genetic algorithms, data analysis, signal processing, robotics and planning motor control, as well as neural networks and other machine learning methods in cancer research.
This book provides a sound mathematical and technical perspective in functional and structural retina models, presents evaluation metrics to assess those models, and provides insights about the models hardware implementation.It begins by introducing the retina anatomy and its workings in a detailed way suitable for an engineering audience, while providing the mathematical analysis of the retina neural response. Moreover, it explores and establishes a framework for the comparison of retina models by organizing a set of metrics for testing and evaluating the different models.The book follows a signal processing perspective, where all models and metrics are discretized in order to be implemented and tested in a digital system, such as a computer or a specialized dedicated hardware device.
The two-volume set LNCS 3561 and LNCS 3562 constitute the refereed proceedings of the First International Work-Conference on the Interplay between Natural and Artificial Computation, IWINAC 2005, held in Las Palmas, Canary Islands, Spain in June 2005. The 118 revised papers presented are thematically divided into two volumes; the first includes all the contributions mainly related with the methodological, conceptual, formal, and experimental developments in the fields of Neurophysiology and cognitive science. The second volume collects the papers related with bioinspired programming strategies and all the contributions related with the computational solutions to engineering problems in different application domains.
The two-volume set of LNCS 11655 and 11656 constitutes the proceedings of the 10th International Conference on Advances in Swarm Intelligence, ICSI 2019, held in Chiang Mai, Thailand, in June 2019. The total of 82 papers presented in these volumes was carefully reviewed and selected from 179 submissions. The papers were organized in topical sections as follows: Part I: Novel methods and algorithms for optimization; particle swarm optimization; ant colony optimization; fireworks algorithms and brain storm optimization; swarm intelligence algorithms and improvements; genetic algorithm and differential evolution; swarm robotics. Part II: Multi-agent system; multi-objective optimization; neural networks; machine learning; identification and recognition; social computing and knowledge graph; service quality and energy management.
The book "Cognitive and Computational Neuroscience - Principles, Algorithms and Applications" will answer the following question and statements: System-level neural modeling: what and why? We know a lot about the brain! Need to integrate data: molecular/cellular/system levels. Complexity: need to abstract away higher-order principles. Models are tools to develop explicit theories, constrained by multiple levels (neural and behavioral). Key: models (should) make novel testable predictions on both neural and behavioral levels. Models are useful tools for guiding experiments. The hope is that the information provided in this book will trigger new researches that will help to connect basic neuroscience to clinical medicine.
When funding agencies and policy organizations consider the role of modeling and simulation in modern biology, the question is often posed, what has been accomplished ? This book will be organized around a symposium on the 20 year history of the CNS meetings, to be held as part of CNS 2010 in San Antonio Texas in July 2010. The book, like the symposium is intended to summarize progress made in Computational Neuroscience over the last 20 years while also considering current challenges in the field. As described in the table of contents, the chapter’s authors have been selected to provide wide coverage of the applications of computational techniques to a broad range of questions and model systems in neuroscience. The proposed book will include several features that establish the history of the field. For each article, its author will select an article originally appearing in a CNS conference proceedings from 15 – 20 years ago. These short (less than 6 page) articles will provide illustrations of the state of the field 20 years ago. The new articles will describe what has been learned about the subject in the following 20 years, and pose specific challenges for the next 20 years. The second historical mechanism will be the reproduction of the first 12 years of posters from the CNS meeting. These posters in and of themselves have become famous in the field (they hang in the halls of the NIH in Bethesda Maryland) and were constructed as allegories for the state and development of computational neuroscience. The posters were designed by the book’s editor, who will, for the first time, provide a written description of each poster.
Kinetic Models of Synaptic Transmission / Alain Destexhe, Zachary F. Mainen, Terrence J. Sejnowski / - Cable Theory for Dendritic Neurons / Wilfrid Rall, Hagai Agmon-Snir / - Compartmental Models of Complex Neurons / Idan Segev, Robert E. Burke / - Multiple Channels and Calcium Dynamics / Walter M. Yamada, Christof Koch, Paul R. Adams / - Modeling Active Dendritic Processes in Pyramidal Neurons / Zachary F. Mainen, Terrence J. Sejnowski / - Calcium Dynamics in Large Neuronal Models / Erik De Schutter, Paul Smolen / - Analysis of Neural Excitability and Oscillations / John Rinzel, Bard Ermentrout / - Design and Fabrication of Analog VLSI Neurons / Rodney Douglas, Misha Mahowald / - Principles of Spike Train Analysis / Fabrizio Gabbiani, Christof Koch / - Modeling Small Networks / Larry Abbott, Eve Marder / - Spatial and Temporal Processing in Central Auditory Networks / Shihab Shamma / - Simulating Large Networks of Neurons / Alexander D. Protopapas, Michael Vanier, James M. Bower / ...
Epilepsy is a neurological disorder that affects millions of patients worldwide and arises from the concurrent action of multiple pathophysiological processes. The power of mathematical analysis and computational modeling is increasingly utilized in basic and clinical epilepsy research to better understand the relative importance of the multi-faceted, seizure-related changes taking place in the brain during an epileptic seizure. This groundbreaking book is designed to synthesize the current ideas and future directions of the emerging discipline of computational epilepsy research. Chapters address relevant basic questions (e.g., neuronal gain control) as well as long-standing, critically important clinical challenges (e.g., seizure prediction). Computational Neuroscience in Epilepsy should be of high interest to a wide range of readers, including undergraduate and graduate students, postdoctoral fellows and faculty working in the fields of basic or clinical neuroscience, epilepsy research, computational modeling and bioengineering. - Covers a wide range of topics from molecular to seizure predictions and brain implants to control seizures - Contributors are top experts at the forefront of computational epilepsy research - Chapter contents are highly relevant to both basic and clinical epilepsy researchers