Computational Modeling of Drugs Against Alzheimer’s Disease

Computational Modeling of Drugs Against Alzheimer’s Disease

Author: Kunal Roy

Publisher: Springer Nature

Published: 2023-06-30

Total Pages: 492

ISBN-13: 1071633112

DOWNLOAD EBOOK

This second edition volume expands on the previous edition with updated descriptions on different computational methods encompassing ligand-based, structure-based, and combined approaches with their recent applications in anti-Alzheimer drug design. Different background topics like recent advancements in research on the development of novel therapies and their implications in the treatment of Alzheimer’s Disease (AD) have also been covered for completeness. Special topics like basic information science methods for insight into neurodegenerative pathogenesis, drug repositioning and network pharmacology, and online tools to predict ADMET behavior with reference to anti-Alzheimer drug development have also been included. In the Neuromethods series style, chapter include the kind of detail and key advice from the specialists needed to get successful results in your laboratory. Cutting-edge and thorough, Computational Modeling of Drugs Against Alzheimer’s Disease, Second Edition is a valuable resource for all researchers and scientists interested in learning more about this important and developing field.


Current Trends in Computational Modeling for Drug Discovery

Current Trends in Computational Modeling for Drug Discovery

Author: Supratik Kar

Publisher: Springer Nature

Published: 2023-06-30

Total Pages: 311

ISBN-13: 3031338715

DOWNLOAD EBOOK

This contributed volume offers a comprehensive discussion on how to design and discover pharmaceuticals using computational modeling techniques. The different chapters deal with the classical and most advanced techniques, theories, protocols, databases, and tools employed in computer-aided drug design (CADD) covering diverse therapeutic classes. Multiple components of Structure-Based Drug Discovery (SBDD) along with its workflow and associated challenges are presented while potential leads for Alzheimer’s disease (AD), antiviral agents, anti-human immunodeficiency virus (HIV) drugs, and leads for Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) disease are discussed in detail. Computational toxicological aspects in drug design and discovery, screening adverse effects, and existing or future in silico tools are highlighted, while a novel in silico tool, RASAR, which can be a major technique for small to big datasets when not much experimental data are present, is presented. The book also introduces the reader to the major drug databases covering drug molecules, chemicals, therapeutic targets, metabolomics, and peptides, which are great resources for drug discovery employing drug repurposing, high throughput, and virtual screening. This volume is a great tool for graduates, researchers, academics, and industrial scientists working in the fields of cheminformatics, bioinformatics, computational biology, and chemistry.


Improving and Accelerating Therapeutic Development for Nervous System Disorders

Improving and Accelerating Therapeutic Development for Nervous System Disorders

Author: Institute of Medicine

Publisher: National Academies Press

Published: 2014-02-06

Total Pages: 107

ISBN-13: 0309292492

DOWNLOAD EBOOK

Improving and Accelerating Therapeutic Development for Nervous System Disorders is the summary of a workshop convened by the IOM Forum on Neuroscience and Nervous System Disorders to examine opportunities to accelerate early phases of drug development for nervous system drug discovery. Workshop participants discussed challenges in neuroscience research for enabling faster entry of potential treatments into first-in-human trials, explored how new and emerging tools and technologies may improve the efficiency of research, and considered mechanisms to facilitate a more effective and efficient development pipeline. There are several challenges to the current drug development pipeline for nervous system disorders. The fundamental etiology and pathophysiology of many nervous system disorders are unknown and the brain is inaccessible to study, making it difficult to develop accurate models. Patient heterogeneity is high, disease pathology can occur years to decades before becoming clinically apparent, and diagnostic and treatment biomarkers are lacking. In addition, the lack of validated targets, limitations related to the predictive validity of animal models - the extent to which the model predicts clinical efficacy - and regulatory barriers can also impede translation and drug development for nervous system disorders. Improving and Accelerating Therapeutic Development for Nervous System Disorders identifies avenues for moving directly from cellular models to human trials, minimizing the need for animal models to test efficacy, and discusses the potential benefits and risks of such an approach. This report is a timely discussion of opportunities to improve early drug development with a focus toward preclinical trials.


Drug-like Properties: Concepts, Structure Design and Methods

Drug-like Properties: Concepts, Structure Design and Methods

Author: Li Di

Publisher: Elsevier

Published: 2010-07-26

Total Pages: 549

ISBN-13: 0080557619

DOWNLOAD EBOOK

Of the thousands of novel compounds that a drug discovery project team invents and that bind to the therapeutic target, typically only a fraction of these have sufficient ADME/Tox properties to become a drug product. Understanding ADME/Tox is critical for all drug researchers, owing to its increasing importance in advancing high quality candidates to clinical studies and the processes of drug discovery. If the properties are weak, the candidate will have a high risk of failure or be less desirable as a drug product. This book is a tool and resource for scientists engaged in, or preparing for, the selection and optimization process. The authors describe how properties affect in vivo pharmacological activity and impact in vitro assays. Individual drug-like properties are discussed from a practical point of view, such as solubility, permeability and metabolic stability, with regard to fundamental understanding, applications of property data in drug discovery and examples of structural modifications that have achieved improved property performance. The authors also review various methods for the screening (high throughput), diagnosis (medium throughput) and in-depth (low throughput) analysis of drug properties. - Serves as an essential working handbook aimed at scientists and students in medicinal chemistry - Provides practical, step-by-step guidance on property fundamentals, effects, structure-property relationships, and structure modification strategies - Discusses improvements in pharmacokinetics from a practical chemist's standpoint


Computational Approaches for Identifying Drugs Against Alzheimer's Disease

Computational Approaches for Identifying Drugs Against Alzheimer's Disease

Author: Radha Mahendran

Publisher: Anchor Academic Publishing

Published: 2017-05

Total Pages: 73

ISBN-13: 3960671385

DOWNLOAD EBOOK

Alzheimer’s disease is the most common form of dementia which is incurable. Although some kinds of memory loss are normal during aging, these are not severe enough to interfere with the level of function. ß-Secretase is an important protease in the pathogenesis of Alzheimer’s disease. Some statine-based peptidomimetics show inhibitory activities to the ß-secretase. To explore the inhibitory mechanism, molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies on these analogues were performed. Quantitative structure-activity relationship (QSAR) modeling pertains to the construction of predictive models of biological activities as a function of structural and molecular information of a compound library. The concept of QSAR has typically been used for drug discovery and development and has gained wide applicability for correlating molecular information with not only biological activities but also with other physicochemical properties, which has therefore been termed quantitative structure-property relationship (QSPR). In this study, 3D QSAR and pharmacophore mapping studies were carried out using Accelrys Discovery Studio 2.1. The best nine drugs were selected from the 16 ligands and pharmacophore features were generated.


Natural Product-based Synthetic Drug Molecules in Alzheimer's Disease

Natural Product-based Synthetic Drug Molecules in Alzheimer's Disease

Author: Abha Sharma

Publisher: Springer Nature

Published: 2024-01-16

Total Pages: 447

ISBN-13: 981996038X

DOWNLOAD EBOOK

This book illustrates the importance of natural products as the source for the development of novel drugs for the treatment of neurodegenerative disorders, including Alzheimer's disease. It also highlights the role of reactive oxygen species and altered metal homeostasis in the progression of Alzheimer’s disease and examines the potential of antioxidants and anti-chelating agents in the clinical intervention of neurodegenerative diseases. The book also discusses the role of neuroinflammation in the pathogenesis of Alzheimer’s disease. The chapters provide information about the drug targets, progress in the development of natural product-based therapeutics, biomarkers, fluorescent diagnostic tools, and theranostic for Alzheimer's disease. The book also provides information about the design and synthesis of natural product-based derivatives against the various targets of Alzheimer's disease including epigenetic targets and the metal dyshomeostasis hypothesis. Cutting across different disciplines, this book is a valuable source for neuroscientists, chemical biologists, pharmaceutical researchers, and synthetic biologists.


Deep Generative Models for Integrative Analysis of Alzheimer's Biomarkers

Deep Generative Models for Integrative Analysis of Alzheimer's Biomarkers

Author: Kumar, Abhishek

Publisher: IGI Global

Published: 2024-11-01

Total Pages: 536

ISBN-13:

DOWNLOAD EBOOK

The integration of generative AI and deep learning techniques for Alzheimer's disease detection significantly impacts the research community by advancing diagnostic accuracy and providing a comprehensive understanding of the disease. By combining multiple data modalities, including imaging, genetics, and clinical data, researchers can improve diagnostic precision and develop personalized treatment strategies. Generative AI facilitates efficient data utilization through dataset augmentation, fostering innovation and collaboration across interdisciplinary fields. These methodologies forward the exploration of new diagnostic tools while expediting their application in clinical practice, benefiting patients through early detection and intervention. The incorporation of generative AI may enhance research capabilities, promote collaboration, and improve Alzheimer's disease management and patient outcomes. Deep Generative Models for Integrative Analysis of Alzheimer's Biomarkers explores the integration of deep generative models in disease diagnosis, biomarking, and prediction. It examines the use of tools like data analysis, natural language processing, and machine learning for effective Alzheimer’s research. This book covers topics such as data analysis, biomedicine, and machine learning, and is a useful resource for computer engineers, biologists, scientists, medical professionals, healthcare workers, academicians, and researchers.


Computational Approaches in Drug Discovery, Development and Systems Pharmacology

Computational Approaches in Drug Discovery, Development and Systems Pharmacology

Author: Rupesh Kumar Gautam

Publisher: Elsevier

Published: 2023-02-15

Total Pages: 364

ISBN-13: 0323993737

DOWNLOAD EBOOK

Computational Approaches in Drug Discovery, Development and Systems Pharmacology provides detailed information on the use of computers in advancing pharmacology. Drug discovery and development is an expensive and time-consuming practice, and computer-assisted drug design (CADD) approaches are increasing in popularity in the pharmaceutical industry to accelerate the process. With the help of CADD, scientists can focus on the most capable compounds so that they can minimize the synthetic and biological testing pains. This book examines success stories of CADD in drug discovery, drug development and role of CADD in system pharmacology, additionally including a focus on the role of artificial intelligence (AI) and deep machine learning in pharmacology. Computational Approaches in Drug Discovery, Development and Systems Pharmacology will be useful to researchers and academics working in the area of CADD, pharmacology and Bioinformatics. - Explains computer use in pharmacology using real-life case studies - Provides information about biological activities using computer technology, thus allowing for the possible reduction of the number of animals used for research - Describes the role of AI in pharmacology and applications of CADD in various diseases


Advanced Machine Learning Approaches in Cancer Prognosis

Advanced Machine Learning Approaches in Cancer Prognosis

Author: Janmenjoy Nayak

Publisher: Springer Nature

Published: 2021-05-29

Total Pages: 461

ISBN-13: 3030719758

DOWNLOAD EBOOK

This book introduces a variety of advanced machine learning approaches covering the areas of neural networks, fuzzy logic, and hybrid intelligent systems for the determination and diagnosis of cancer. Moreover, the tactical solutions of machine learning have proved its vast range of significance and, provided novel solutions in the medical field for the diagnosis of disease. This book also explores the distinct deep learning approaches that are capable of yielding more accurate outcomes for the diagnosis of cancer. In addition to providing an overview of the emerging machine and deep learning approaches, it also enlightens an insight on how to evaluate the efficiency and appropriateness of such techniques and analysis of cancer data used in the cancer diagnosis. Therefore, this book focuses on the recent advancements in the machine learning and deep learning approaches used in the diagnosis of different types of cancer along with their research challenges and future directions for the targeted audience including scientists, experts, Ph.D. students, postdocs, and anyone interested in the subjects discussed.


Fundamentals of Neural Network Modeling

Fundamentals of Neural Network Modeling

Author: Randolph W. Parks

Publisher: MIT Press

Published: 1998

Total Pages: 450

ISBN-13: 9780262161756

DOWNLOAD EBOOK

Provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. Over the past few years, computer modeling has become more prevalent in the clinical sciences as an alternative to traditional symbol-processing models. This book provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. It is intended to make the neural network approach accessible to practicing neuropsychologists, psychologists, neurologists, and psychiatrists. It will also be a useful resource for computer scientists, mathematicians, and interdisciplinary cognitive neuroscientists. The editors (in their introduction) and contributors explain the basic concepts behind modeling and avoid the use of high-level mathematics. The book is divided into four parts. Part I provides an extensive but basic overview of neural network modeling, including its history, present, and future trends. It also includes chapters on attention, memory, and primate studies. Part II discusses neural network models of behavioral states such as alcohol dependence, learned helplessness, depression, and waking and sleeping. Part III presents neural network models of neuropsychological tests such as the Wisconsin Card Sorting Task, the Tower of Hanoi, and the Stroop Test. Finally, part IV describes the application of neural network models to dementia: models of acetycholine and memory, verbal fluency, Parkinsons disease, and Alzheimer's disease. Contributors J. Wesson Ashford, Rajendra D. Badgaiyan, Jean P. Banquet, Yves Burnod, Nelson Butters, John Cardoso, Agnes S. Chan, Jean-Pierre Changeux, Kerry L. Coburn, Jonathan D. Cohen, Laurent Cohen, Jose L. Contreras-Vidal, Antonio R. Damasio, Hanna Damasio, Stanislas Dehaene, Martha J. Farah, Joaquin M. Fuster, Philippe Gaussier, Angelika Gissler, Dylan G. Harwood, Michael E. Hasselmo, J, Allan Hobson, Sam Leven, Daniel S. Levine, Debra L. Long, Roderick K. Mahurin, Raymond L. Ownby, Randolph W. Parks, Michael I. Posner, David P. Salmon, David Servan-Schreiber, Chantal E. Stern, Jeffrey P. Sutton, Lynette J. Tippett, Daniel Tranel, Bradley Wyble