Computational Biology Of Cancer: Lecture Notes And Mathematical Modeling

Computational Biology Of Cancer: Lecture Notes And Mathematical Modeling

Author: Dominik Wodarz

Publisher: World Scientific

Published: 2005-01-24

Total Pages: 266

ISBN-13: 9814481874

DOWNLOAD EBOOK

The book shows how mathematical and computational models can be used to study cancer biology. It introduces the concept of mathematical modeling and then applies it to a variety of topics in cancer biology. These include aspects of cancer initiation and progression, such as the somatic evolution of cells, genetic instability, and angiogenesis. The book also discusses the use of mathematical models for the analysis of therapeutic approaches such as chemotherapy, immunotherapy, and the use of oncolytic viruses.


Computational Mathematics Modeling in Cancer Analysis

Computational Mathematics Modeling in Cancer Analysis

Author: Wenjian Qin

Publisher: Springer Nature

Published: 2023-10-07

Total Pages: 182

ISBN-13: 3031450876

DOWNLOAD EBOOK

This volume LNCS 14243 constitutes the refereed proceedings of the Second International Workshop, CMMCA 2023, Held in Conjunction with MICCAI 2023, on October 8, 2023, in Vancouver, BC, Canada. The 17 full papers presented were carefully reviewed and selected from 25 submissions. The conference focuses on the discovery of cutting-edge techniques addressing trends and challenges in theoretical, computational, and applied aspects of mathematical cancer data analysis.


Multiscale Modeling of Cancer

Multiscale Modeling of Cancer

Author: Vittorio Cristini

Publisher: Cambridge University Press

Published: 2010-09-09

Total Pages: 299

ISBN-13: 1139491504

DOWNLOAD EBOOK

Mathematical modeling, analysis and simulation are set to play crucial roles in explaining tumor behavior, and the uncontrolled growth of cancer cells over multiple time and spatial scales. This book, the first to integrate state-of-the-art numerical techniques with experimental data, provides an in-depth assessment of tumor cell modeling at multiple scales. The first part of the text presents a detailed biological background with an examination of single-phase and multi-phase continuum tumor modeling, discrete cell modeling, and hybrid continuum-discrete modeling. In the final two chapters, the authors guide the reader through problem-based illustrations and case studies of brain and breast cancer, to demonstrate the future potential of modeling in cancer research. This book has wide interdisciplinary appeal and is a valuable resource for mathematical biologists, biomedical engineers and clinical cancer research communities wishing to understand this emerging field.


Introduction to Mathematical Oncology

Introduction to Mathematical Oncology

Author: Yang Kuang

Publisher: CRC Press

Published: 2016-04-05

Total Pages: 469

ISBN-13: 1584889918

DOWNLOAD EBOOK

Introduction to Mathematical Oncology presents biologically well-motivated and mathematically tractable models that facilitate both a deep understanding of cancer biology and better cancer treatment designs. It covers the medical and biological background of the diseases, modeling issues, and existing methods and their limitations. The authors introduce mathematical and programming tools, along with analytical and numerical studies of the models. They also develop new mathematical tools and look to future improvements on dynamical models. After introducing the general theory of medicine and exploring how mathematics can be essential in its understanding, the text describes well-known, practical, and insightful mathematical models of avascular tumor growth and mathematically tractable treatment models based on ordinary differential equations. It continues the topic of avascular tumor growth in the context of partial differential equation models by incorporating the spatial structure and physiological structure, such as cell size. The book then focuses on the recent active multi-scale modeling efforts on prostate cancer growth and treatment dynamics. It also examines more mechanistically formulated models, including cell quota-based population growth models, with applications to real tumors and validation using clinical data. The remainder of the text presents abundant additional historical, biological, and medical background materials for advanced and specific treatment modeling efforts. Extensively classroom-tested in undergraduate and graduate courses, this self-contained book allows instructors to emphasize specific topics relevant to clinical cancer biology and treatment. It can be used in a variety of ways, including a single-semester undergraduate course, a more ambitious graduate course, or a full-year sequence on mathematical oncology.


Multiscale Cancer Modeling

Multiscale Cancer Modeling

Author: Thomas S. Deisboeck

Publisher: CRC Press

Published: 2010-12-08

Total Pages: 492

ISBN-13: 1439814422

DOWNLOAD EBOOK

Cancer is a complex disease process that spans multiple scales in space and time. Driven by cutting-edge mathematical and computational techniques, in silico biology provides powerful tools to investigate the mechanistic relationships of genes, cells, and tissues. It enables the creation of experimentally testable hypotheses, the integration of dat


Handbook of Cancer Models with Applications

Handbook of Cancer Models with Applications

Author: W. Y. Tan

Publisher: World Scientific

Published: 2008

Total Pages: 592

ISBN-13: 9812779485

DOWNLOAD EBOOK

Composed of contributions from an international team of leading researchers, this book pulls together the most recent research results in the field of cancer modeling to provide readers with the most advanced mathematical models of cancer and their applications.Topics included in the book cover oncogenetic trees, stochastic multistage models of carcinogenesis, effects of ionizing radiation on cell cycle and genomic instability, induction of DNA damage by ionizing radiation and its repair, epigenetic cancer models, bystander effects of radiation, multiple pathway models of human colon cancer, and stochastic models of metastasis. The book also provides some important applications of cancer models to the assessment of cancer risk associated with various hazardous environmental agents, to cancer screening by MRI, and to drug resistance in cancer chemotherapy. An updated statistical design and analysis of xenograft experiments as well as a statistical analysis of cancer occult clinical data are also provided.The book will serve as a useful source of reference for researchers in biomathematics, biostatistics and bioinformatics; for clinical investigators and medical doctors employing quantitative methods to develop procedures for cancer diagnosis, prevention, control and treatment; and for graduate students.


Selected Topics in Cancer Modeling

Selected Topics in Cancer Modeling

Author: Nicola Bellomo

Publisher: Springer Science & Business Media

Published: 2008-12-10

Total Pages: 481

ISBN-13: 0817647139

DOWNLOAD EBOOK

This collection of selected chapters offers a comprehensive overview of state-of-the-art mathematical methods and tools for modeling and analyzing cancer phenomena. Topics covered include stochastic evolutionary models of cancer initiation and progression, tumor cords and their response to anticancer agents, and immune competition in tumor progression and prevention. The complexity of modeling living matter requires the development of new mathematical methods and ideas. This volume, written by first-rate researchers in the field of mathematical biology, is one of the first steps in that direction.


Dynamics Of Cancer: Mathematical Foundations Of Oncology

Dynamics Of Cancer: Mathematical Foundations Of Oncology

Author: Dominik Wodarz

Publisher: World Scientific

Published: 2014-04-24

Total Pages: 533

ISBN-13: 9814566381

DOWNLOAD EBOOK

The book aims to provide an introduction to mathematical models that describe the dynamics of tumor growth and the evolution of tumor cells. It can be used as a textbook for advanced undergraduate or graduate courses, and also serves as a reference book for researchers. The book has a strong evolutionary component and reflects the viewpoint that cancer can be understood rationally through a combination of mathematical and biological tools. It can be used both by mathematicians and biologists. Mathematically, the book starts with relatively simple ordinary differential equation models, and subsequently explores more complex stochastic and spatial models. Biologically, the book starts with explorations of the basic dynamics of tumor growth, including competitive interactions among cells, and subsequently moves on to the evolutionary dynamics of cancer cells, including scenarios of cancer initiation, progression, and treatment. The book finishes with a discussion of advanced topics, which describe how some of the mathematical concepts can be used to gain insights into a variety of questions, such as epigenetics, telomeres, gene therapy, and social interactions of cancer cells.


Mathematical Oncology 2013

Mathematical Oncology 2013

Author: Alberto d'Onofrio

Publisher: Springer

Published: 2014-10-16

Total Pages: 336

ISBN-13: 1493904582

DOWNLOAD EBOOK

With chapters on free boundaries, constitutive equations, stochastic dynamics, nonlinear diffusion–consumption, structured populations, and applications of optimal control theory, this volume presents the most significant recent results in the field of mathematical oncology. It highlights the work of world-class research teams, and explores how different researchers approach the same problem in various ways. Tumors are complex entities that present numerous challenges to the mathematical modeler. First and foremost, they grow. Thus their spatial mean field description involves a free boundary problem. Second, their interiors should be modeled as nontrivial porous media using constitutive equations. Third, at the end of anti-cancer therapy, a small number of malignant cells remain, making the post-treatment dynamics inherently stochastic. Fourth, the growth parameters of macroscopic tumors are non-constant, as are the parameters of anti-tumor therapies. Changes in these parameters may induce phenomena that are mathematically equivalent to phase transitions. Fifth, tumor vascular growth is random and self-similar. Finally, the drugs used in chemotherapy diffuse and are taken up by the cells in nonlinear ways. Mathematical Oncology 2013 will appeal to graduate students and researchers in biomathematics, computational and theoretical biology, biophysics, and bioengineering.