Computational Linear and Commutative Algebra

Computational Linear and Commutative Algebra

Author: Martin Kreuzer

Publisher: Springer

Published: 2016-09-06

Total Pages: 332

ISBN-13: 3319436015

DOWNLOAD EBOOK

This book combines, in a novel and general way, an extensive development of the theory of families of commuting matrices with applications to zero-dimensional commutative rings, primary decompositions and polynomial system solving. It integrates the Linear Algebra of the Third Millennium, developed exclusively here, with classical algorithmic and algebraic techniques. Even the experienced reader will be pleasantly surprised to discover new and unexpected aspects in a variety of subjects including eigenvalues and eigenspaces of linear maps, joint eigenspaces of commuting families of endomorphisms, multiplication maps of zero-dimensional affine algebras, computation of primary decompositions and maximal ideals, and solution of polynomial systems. This book completes a trilogy initiated by the uncharacteristically witty books Computational Commutative Algebra 1 and 2 by the same authors. The material treated here is not available in book form, and much of it is not available at all. The authors continue to present it in their lively and humorous style, interspersing core content with funny quotations and tongue-in-cheek explanations.


Computational Methods in Commutative Algebra and Algebraic Geometry

Computational Methods in Commutative Algebra and Algebraic Geometry

Author: Wolmer Vasconcelos

Publisher: Springer Science & Business Media

Published: 2004-05-18

Total Pages: 432

ISBN-13: 9783540213116

DOWNLOAD EBOOK

This ACM volume deals with tackling problems that can be represented by data structures which are essentially matrices with polynomial entries, mediated by the disciplines of commutative algebra and algebraic geometry. The discoveries stem from an interdisciplinary branch of research which has been growing steadily over the past decade. The author covers a wide range, from showing how to obtain deep heuristics in a computation of a ring, a module or a morphism, to developing means of solving nonlinear systems of equations - highlighting the use of advanced techniques to bring down the cost of computation. Although intended for advanced students and researchers with interests both in algebra and computation, many parts may be read by anyone with a basic abstract algebra course.


Computational Commutative Algebra 1

Computational Commutative Algebra 1

Author: Martin Kreuzer

Publisher: Springer Science & Business Media

Published: 2008-07-15

Total Pages: 325

ISBN-13: 354067733X

DOWNLOAD EBOOK

This introduction to polynomial rings, Gröbner bases and applications bridges the gap in the literature between theory and actual computation. It details numerous applications, covering fields as disparate as algebraic geometry and financial markets. To aid in a full understanding of these applications, more than 40 tutorials illustrate how the theory can be used. The book also includes many exercises, both theoretical and practical.


Linear Algebra over Commutative Rings

Linear Algebra over Commutative Rings

Author: Bernard R. McDonald

Publisher: CRC Press

Published: 2020-11-26

Total Pages: 563

ISBN-13: 1000146464

DOWNLOAD EBOOK

This monograph arose from lectures at the University of Oklahoma on topics related to linear algebra over commutative rings. It provides an introduction of matrix theory over commutative rings. The monograph discusses the structure theory of a projective module.


Computational Algebra: Course And Exercises With Solutions

Computational Algebra: Course And Exercises With Solutions

Author: Ihsen Yengui

Publisher: World Scientific

Published: 2021-05-17

Total Pages: 283

ISBN-13: 981123826X

DOWNLOAD EBOOK

This book intends to provide material for a graduate course on computational commutative algebra and algebraic geometry, highlighting potential applications in cryptography. Also, the topics in this book could form the basis of a graduate course that acts as a segue between an introductory algebra course and the more technical topics of commutative algebra and algebraic geometry.This book contains a total of 124 exercises with detailed solutions as well as an important number of examples that illustrate definitions, theorems, and methods. This is very important for students or researchers who are not familiar with the topics discussed. Experience has shown that beginners who want to take their first steps in algebraic geometry are usually discouraged by the difficulty of the proposed exercises and the absence of detailed answers. Therefore, exercises (and their solutions) as well as examples occupy a prominent place in this course.This book is not designed as a comprehensive reference work, but rather as a selective textbook. The many exercises with detailed answers make it suitable for use in both a math or computer science course.


Gröbner Bases

Gröbner Bases

Author: Thomas Becker

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 587

ISBN-13: 1461209137

DOWNLOAD EBOOK

The origins of the mathematics in this book date back more than two thou sand years, as can be seen from the fact that one of the most important algorithms presented here bears the name of the Greek mathematician Eu clid. The word "algorithm" as well as the key word "algebra" in the title of this book come from the name and the work of the ninth-century scientist Mohammed ibn Musa al-Khowarizmi, who was born in what is now Uzbek istan and worked in Baghdad at the court of Harun al-Rashid's son. The word "algorithm" is actually a westernization of al-Khowarizmi's name, while "algebra" derives from "al-jabr," a term that appears in the title of his book Kitab al-jabr wa'l muqabala, where he discusses symbolic methods for the solution of equations. This close connection between algebra and al gorithms lasted roughly up to the beginning of this century; until then, the primary goal of algebra was the design of constructive methods for solving equations by means of symbolic transformations. During the second half of the nineteenth century, a new line of thought began to enter algebra from the realm of geometry, where it had been successful since Euclid's time, namely, the axiomatic method.


Commutative Algebra

Commutative Algebra

Author: David Eisenbud

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 784

ISBN-13: 1461253500

DOWNLOAD EBOOK

This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.


Undergraduate Commutative Algebra

Undergraduate Commutative Algebra

Author: Miles Reid

Publisher: Cambridge University Press

Published: 1995-11-30

Total Pages: 172

ISBN-13: 9780521458894

DOWNLOAD EBOOK

Commutative algebra is at the crossroads of algebra, number theory and algebraic geometry. This textbook is affordable and clearly illustrated, and is intended for advanced undergraduate or beginning graduate students with some previous experience of rings and fields. Alongside standard algebraic notions such as generators of modules and the ascending chain condition, the book develops in detail the geometric view of a commutative ring as the ring of functions on a space. The starting point is the Nullstellensatz, which provides a close link between the geometry of a variety V and the algebra of its coordinate ring A=k[V]; however, many of the geometric ideas arising from varieties apply also to fairly general rings. The final chapter relates the material of the book to more advanced topics in commutative algebra and algebraic geometry. It includes an account of some famous 'pathological' examples of Akizuki and Nagata, and a brief but thought-provoking essay on the changing position of abstract algebra in today's world.


Introduction to Applied Linear Algebra

Introduction to Applied Linear Algebra

Author: Stephen Boyd

Publisher: Cambridge University Press

Published: 2018-06-07

Total Pages: 477

ISBN-13: 1316518965

DOWNLOAD EBOOK

A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.


Modern Computer Algebra

Modern Computer Algebra

Author: Joachim von zur Gathen

Publisher: Cambridge University Press

Published: 2013-04-25

Total Pages: 811

ISBN-13: 1107039037

DOWNLOAD EBOOK

Now in its third edition, this highly successful textbook is widely regarded as the 'bible of computer algebra'.