Uncertainty Quantification in Computational Fluid Dynamics

Uncertainty Quantification in Computational Fluid Dynamics

Author: Hester Bijl

Publisher: Springer Science & Business Media

Published: 2013-09-20

Total Pages: 347

ISBN-13: 3319008854

DOWNLOAD EBOOK

Fluid flows are characterized by uncertain inputs such as random initial data, material and flux coefficients, and boundary conditions. The current volume addresses the pertinent issue of efficiently computing the flow uncertainty, given this initial randomness. It collects seven original review articles that cover improved versions of the Monte Carlo method (the so-called multi-level Monte Carlo method (MLMC)), moment-based stochastic Galerkin methods and modified versions of the stochastic collocation methods that use adaptive stencil selection of the ENO-WENO type in both physical and stochastic space. The methods are also complemented by concrete applications such as flows around aerofoils and rockets, problems of aeroelasticity (fluid-structure interactions), and shallow water flows for propagating water waves. The wealth of numerical examples provide evidence on the suitability of each proposed method as well as comparisons of different approaches.


Proceedings of the International Conference on Aerospace System Science and Engineering 2019

Proceedings of the International Conference on Aerospace System Science and Engineering 2019

Author: Zhongliang Jing

Publisher: Springer Nature

Published: 2020-02-29

Total Pages: 372

ISBN-13: 9811517738

DOWNLOAD EBOOK

This book presents the proceedings of the International Conference on Aerospace System Science and Engineering (ICASSE 2019), held in Toronto, Canada, on July 30–August 1, 2019, and jointly organized by the University of Toronto Institute for Aerospace Studies (UTIAS) and the Shanghai Jiao Tong University School of Aeronautics and Astronautics. ICASSE 2019 provided a forum that brought together experts on aeronautics and astronautics to share new ideas and findings. These proceedings present high-quality contributions in the areas of aerospace system science and engineering, including topics such as trans-space vehicle system design and integration, air vehicle systems, space vehicle systems, near-space vehicle systems, aerospace robotics and unmanned systems, communication, navigation and surveillance, aerodynamics and aircraft design, dynamics and control, aerospace propulsion, avionics systems, optoelectronic systems, and air traffic management.


AIAA Guide for the Verification and Validation of Computational Fluid Dynamics Simulations

AIAA Guide for the Verification and Validation of Computational Fluid Dynamics Simulations

Author: American Institute of Aeronautics and Astronautics

Publisher: AIAA (American Institute of Aeronautics & Astronautics)

Published: 1998

Total Pages: 0

ISBN-13: 9781563472855

DOWNLOAD EBOOK

This document defines a number of key terms, discusses fundamental concepts, and specifies general procedures for conducting verification and validation of computational fluid dynamics simulations. It's goal is to provide a foundation for the major issues and concepts in verification and validation. However, it does not recommend standards in these areas because a number of important issues are not yet resolved.


TILDA: Towards Industrial LES/DNS in Aeronautics

TILDA: Towards Industrial LES/DNS in Aeronautics

Author: Charles Hirsch

Publisher: Springer Nature

Published: 2021-06-28

Total Pages: 550

ISBN-13: 3030620484

DOWNLOAD EBOOK

This book offers detailed insights into new methods for high-fidelity CFD, and their industrially relevant applications in aeronautics. It reports on the H2020 TILDA project, funded by the European Union in 2015-2018. The respective chapters demonstrate the potential of high-order methods for enabling more accurate predictions of non-linear, unsteady flows, ensuring enhanced reliability in CFD predictions. The book highlights industrially relevant findings and representative test cases on the development of high-order methods for unsteady turbulence simulations on unstructured grids; on the development of the LES/DNS methodology by means of multilevel, adaptive, fractal and similar approaches for applications on unstructured grids; and on leveraging existent large-scale HPC networks to facilitate the industrial applications of LES/DNS in daily practice. Furthermore, the book discusses multidisciplinary applications of high-order methods in the area of aero-acoustics. All in all, it offers timely insights into the application and performance of high-order methods for CFD, and an extensive reference guide for researchers, graduate students, and industrial engineers whose work involves CFD and turbulence modeling.


Computational Fluid Dynamics (CFD)

Computational Fluid Dynamics (CFD)

Author: Gretchen Powell

Publisher: Nova Science Publishers

Published: 2016

Total Pages: 0

ISBN-13: 9781634848886

DOWNLOAD EBOOK

Computational fluid dynamics (CFD) combines continuum and discrete theories for fluid modeling with computational algorithms for fluid simulation. It is an important research area since there is a wide range of natural phenomena that can be modeled through fluid theory. Some common engineering examples are pumps, fans, turbines, airplanes, ships, rivers, windmills, pipes, and more recently, the hemodynamics of the arterial system. This book examines several characteristics of CFD, as well as its applications and analysis.


Computational Fluid Dynamics 2002

Computational Fluid Dynamics 2002

Author: Steve Armfield

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 837

ISBN-13: 3642593348

DOWNLOAD EBOOK

We are pleased to present the Proceedings of the Second International Conference on Computational Fluid Dynamics held at the University of Sydney, Australia, from July 15 to 19, 2002. The conference was a productive meeting of scientists, mathematicians and engineers involved in the computation of fluid flow. Keynote lectures were presented in the areas of optimisation, algorithms, turbulence and bio-fluid mechanics. Two hundred and fifty abstracts from many countries were received for con sideration. The executive committee, consisting of A. Lerat, M. Napolitano, J.J. Chattot, N. Satofuka and myself, were responsible for the selection of papers. Each of the members had a separate subcommittee to carry out the evaluation. One hundred and seventy papers were selected of which one hundred and fifty two were presented at the conference. All papers that appear in the proceedings have been peer reviewed by a panel of experts (with a minimum of two for every paper) before publication. The conference was attended by 160 delegates with a minimum of late with drawals. The informal and friendly atmosphere provided by the university sur roundings was highly appreciated, and the technical aspects of the conference were stimulating. It is appropriate here to thank Alain Lerat, the retiring secretary of the international scientific committee of the conference. We also wish to welcome J. J. Chattot who is the incoming secretary.