Applications of Computational Intelligence in Concrete Technology

Applications of Computational Intelligence in Concrete Technology

Author: Sakshi Gupta

Publisher: CRC Press

Published: 2022-06-23

Total Pages: 321

ISBN-13: 1000600548

DOWNLOAD EBOOK

Computational intelligence (CI) in concrete technology has not yet been fully explored worldwide because of some limitations in data sets. This book discusses the selection and separation of data sets, performance evaluation parameters for different types of concrete and related materials, and sensitivity analysis related to various CI techniques. Fundamental concepts and essential analysis for CI techniques such as artificial neural network, fuzzy system, support vector machine, and how they work together for resolving real-life problems, are explained. Features: It is the first book on this fast-growing research field. It discusses the use of various computation intelligence techniques in concrete technology applications. It explains the effectiveness of the methods used and the wide range of available techniques. It integrates a wide range of disciplines from civil engineering, construction technology, and concrete technology to computation intelligence, soft computing, data science, computer science, and so on. It brings together the experiences of contributors from around the world who are doing research in this field and explores the different aspects of their research. The technical content included is beneficial for researchers as well as practicing engineers in the concrete and construction industry.


Computational Concrete Structures Technology

Computational Concrete Structures Technology

Author: Zdeněk Bittnar

Publisher:

Published: 2000

Total Pages: 188

ISBN-13:

DOWNLOAD EBOOK

Contains a selection of papers that were presented at The Fifth International Conference on Computational Structures Technology and The Second International Conference on Engineering Computational Technology, which were held in Leuven, Belgium from 6-8 September 2000.


Computational Modelling of Concrete Structures

Computational Modelling of Concrete Structures

Author: Nenad Bicanic

Publisher: CRC Press

Published: 2014-03-04

Total Pages: 1108

ISBN-13: 1138001457

DOWNLOAD EBOOK

The EURO-C conference series (Split 1984, Zell am See 1990, Innsbruck 1994, Badgastein 1998, St Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St Anton am Alberg 2014) brings together researchers and practising engineers concerned with theoretical, algorithmic and validation aspects associated with computational simulations of concrete and concrete structures. The conference reviews and discusses research advancements and the applicability and robustness of methods and models for reliable analysis of complex concrete, reinforced concrete and pre-stressed concrete structures in engineering practice. Conference topics and invited papers cover both computational mechanics and computational modelling aspects of the analysis and design of concrete and concrete structures: * Constitutive and Multiscale Modelling of Concrete * Advances in Computational Modelling * Time Dependent and Multiphysics Problems * Performance of Concrete Structures The book is of special interest to researchers in computational concrete mechanics, as well as industry experts in complex nonlinear simulations of concrete structures.


Computational Structural Concrete

Computational Structural Concrete

Author: Ulrich Haussler-Combe

Publisher: John Wiley & Sons

Published: 2022-11-21

Total Pages: 450

ISBN-13: 3433033102

DOWNLOAD EBOOK

Concrete is by far the most used building material due to its advantages: it is shapeable, cost-effective and available everywhere. Combined with reinforcement it provides an immense bandwidth of properties and may be customized for a huge range of purposes. Thus, concrete is the building material of the 20th century. To be the building material of the 21th century its sustainability has to move into focus. Reinforced concrete structures have to be designed expending less material whereby their load carrying potential has to be fully utilized. Computational methods such as Finite Element Method (FEM) provide essential tools to reach the goal. In combination with experimental validation, they enable a deeper understanding of load carrying mechanisms. A more realistic estimation of ultimate and serviceability limit states can be reached compared to traditional approaches. This allows for a significantly improved utilization of construction materials and a broader horizon for innovative structural designs opens up. However, sophisticated computational methods are usually provided as black boxes. Data is fed in, the output is accepted as it is, but an understanding of the steps in between is often rudimentary. This has the risk of misinterpretations, not to say invalid results compared to initial problem definitions. The risk is in particular high for nonlinear problems. As a composite material, reinforced concrete exhibits nonlinear behaviour in its limit states, caused by interaction of concrete and reinforcement via bond and the nonlinear properties of the components. Its cracking is a regular behaviour. The book aims to make the mechanisms of reinforced concrete transparent from the perspective of numerical methods. In this way, black boxes should also become transparent. Appropriate methods are described for beams, plates, slabs and shells regarding quasi-statics and dynamics. Concrete creeping, temperature effects, prestressing, large displacements are treated as examples. State of the art concrete material models are presented. Both the opportunities and the pitfalls of numerical methods are shown. Theory is illustrated by a variety of examples. Most of them are performed with the ConFem software package implemented in Python and available under open-source conditions.


Computational Modelling of Concrete Structures

Computational Modelling of Concrete Structures

Author: Günther Meschke

Publisher: CRC Press

Published: 2018-01-31

Total Pages: 1735

ISBN-13: 1351726757

DOWNLOAD EBOOK

The EURO-C conference series (Split 1984, Zell am See 1990, Innsbruck 1994, Badgastein 1998, St. Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St. Anton am Arlberg 2014, and Bad Hofgastein 2018) brings together researchers and practising engineers concerned with theoretical, algorithmic and validation aspects associated with computational simulations of concrete and concrete structures. Computational Modelling of Concrete Structures reviews and discusses research advancements and the applicability and robustness of methods and models for reliable analysis of complex concrete, reinforced concrete and pre-stressed concrete structures in engineering practice. The contributions cover both computational mechanics and computational modelling aspects of the analysis and design of concrete and concrete structures: Multi-scale cement and concrete research: experiments and modelling Aging concrete: from very early ages to decades-long durability Advances in material modelling of plain concrete Analysis of reinforced concrete structures Steel-concrete interaction, fibre-reinforced concrete, and masonry Dynamic behaviour: from seismic retrofit to impact simulation Computational Modelling of Concrete Structures is of special interest to academics and researchers in computational concrete mechanics, as well as industry experts in complex nonlinear simulations of concrete structures.


Computational Modelling of Concrete and Concrete Structures

Computational Modelling of Concrete and Concrete Structures

Author: Günther Meschke

Publisher: CRC Press

Published: 2022-05-22

Total Pages: 1500

ISBN-13: 100064474X

DOWNLOAD EBOOK

Computational Modelling of Concrete and Concrete Structures contains the contributions to the EURO-C 2022 conference (Vienna, Austria, 23-26 May 2022). The papers review and discuss research advancements and assess the applicability and robustness of methods and models for the analysis and design of concrete, fibre-reinforced and prestressed concrete structures, as well as masonry structures. Recent developments include methods of machine learning, novel discretisation methods, probabilistic models, and consideration of a growing number of micro-structural aspects in multi-scale and multi-physics settings. In addition, trends towards the material scale with new fibres and 3D printable concretes, and life-cycle oriented models for ageing and durability of existing and new concrete infrastructure are clearly visible. Overall computational robustness of numerical predictions and mathematical rigour have further increased, accompanied by careful model validation based on respective experimental programmes. The book will serve as an important reference for both academics and professionals, stimulating new research directions in the field of computational modelling of concrete and its application to the analysis of concrete structures. EURO-C 2022 is the eighth edition of the EURO-C conference series after Innsbruck 1994, Bad Gastein 1998, St. Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St. Anton am Arlberg 2014, and Bad Hofgastein 2018. The overarching focus of the conferences is on computational methods and numerical models for the analysis of concrete and concrete structures.


Computational Methods for Reinforced Concrete Structures

Computational Methods for Reinforced Concrete Structures

Author: Ulrich Häußler-Combe

Publisher: John Wiley & Sons

Published: 2014-09-23

Total Pages: 357

ISBN-13: 3433603634

DOWNLOAD EBOOK

Das vorliegende Buch behandelt die Anwendung numerischer Methoden auf die Berechnung von Stahlbetontragwerken. Rissbildung, Verbundwirkung und nichtlineares zeitabhängiges Spannungs-Dehnungs-Verhalten der Stahlbetonelemente lassen sich mit der Elastizitätstheorie allein nicht darstellen. Die Erfassung solcher Phänomene ist jedoch für die Untersuchung der Grenzzustände der Tragfähigkeit und der Gebrauchstauglichkeit erforderlich. Dieses Buch gibt eine anwendungsbezogene Zusammenfassung der numerischen Methoden einschließlich FEM. Der Schlüssel dazu liegt in der Beschreibung und im Verständnis des Materialverhaltens. Die wichtigsten Materialeigenschaften von Beton und Bewehrungsstahl und ihre Verbundwirkung werden erläutert. Mit diesen Grundlagen werden verschiedene Elemente wie Stäbe, Balken, Stabwerkmodell, Platten, Scheiben und Schalen behandelt. Dabei werden Vorspannung, Rissbildung, nichtlineares Spannung-Dehnungs-Verhalten, Kriechen, Schwinden und Temperatureinwirkungen berücksichtigt. Für alle Tragelemente werden die jeweils geeigneten Methoden hergeleitet. Dynamische Aufgaben und quasi-statische Kurzzeiteinwirkungen sowie vorübergehende Prozesse wie Kriechen und Schwinden werden gelöst. Die Problemstellungen werden anhand von zahlreichen Beispielen veranschaulicht. Diese sind mit dem Programmpaket ConFem berechnet, welches zusammen mit den Eingabedaten unter Open-Source-Bedingungen unter www.concrete-fem.com zur Verfügung steht. Der Autor zeigt die Möglichkeiten und Grenzen der numerischen Methoden der Baustatik zur Simulation von Stahlbetontragwerken auf. Ein Buch für Studium, Lehre und Forschung, ebenso wie für Tragwerksplaner und Prüfingenieure.


Computational Structures Technology

Computational Structures Technology

Author: B. H. V. Topping

Publisher: Saxe-Coburg Publications

Published: 2002

Total Pages: 456

ISBN-13:

DOWNLOAD EBOOK

Containing the invited lectures presented at the Sixth International Conference on Computational Structures Technology, held in Prague, Czech Republic, 4-6 September 2002, this book includes contributions from: KJ Bathe, Z Bittnar, MA Bradford, B Brank, C Cinquini, D Gawin, JF Hiller, A Ibrahimbegovic, L Jendele, M Jirasek and others.


Computational Mechanics of Reinforced Concrete Structures

Computational Mechanics of Reinforced Concrete Structures

Author: Günter Hofstetter

Publisher: Springer

Published: 1995

Total Pages: 382

ISBN-13:

DOWNLOAD EBOOK

Dieses Buch enthält die naturwissenschaftliche Grundlage zur Anwendung der rechnerunterstützten Mechanik auf starre Körper. Neben den Materialien stehen vor allen Dingen die mathematische Modellbildung sowie typische Anwendungen aus dem Ingenieurwesen.This book covers both material modelling of plain, reinforced and prestressed concrete and nonlinear structural analysis of reinforced and prestressed concrete structures. The four chapters of the book are organized as follows: survey of experimental investigations, mathematical models, the finite element method for reinforced and prestressed concrete structures, application to engineering problems.