Computational and Numerical Challenges in Environmental Modelling

Computational and Numerical Challenges in Environmental Modelling

Author: Zahari Zlatev

Publisher: Elsevier

Published: 2006-05-02

Total Pages: 392

ISBN-13: 0080462480

DOWNLOAD EBOOK

Many large mathematical models, not only models arising and used in environmental studies, are described by systems of partial differential equations. The discretization of the spatial derivatives in such models leads to the solution of very large systems of ordinary differential equations. These systems contain many millions of equations and have to be handled over large time intervals by applying many time-steps (up to several hundred thousand time-steps). Furthermore, many scenarios are as a rule to be run. This explains the fact that the computational tasks in this situation are enormous. Therefore, it is necessary to select fast numerical methods; to develop parallel codes and, what is most important when the problems solved are very large to organize the computational process in a proper way.The last item (which is very often underestimated but, let us re-iterate, which is very important) is the major topic of this book. In fact, the proper organization of the computational process can be viewed as a preparation of templates which can be used with different numerical methods and different parallel devices. The development of such templates is described in the book. It is also demonstrated that many comprehensive environmental studies can successfully be carried out when the computations are correctly organized. Thus, this book will help the reader to understand better that, while (a) it is very important to select fast numerical methods as well as (b) it is very important to develop parallel codes, this will not be sufficient when the problems solved are really very large. In the latter case, it is also crucial to exploit better the computer architecture by organizing properly the computational process. - Use of templates in connection with the treatment of very large models - Performance of comprehensive environmental studies - Obtaining reliable and robust information about pollution levels - Studying the impact of future climatic changes on high pollution levels - Investigating trends related to critical levels of pollution


Introduction to Environmental Data Analysis and Modeling

Introduction to Environmental Data Analysis and Modeling

Author: Moses Eterigho Emetere

Publisher: Springer Nature

Published: 2020-01-03

Total Pages: 239

ISBN-13: 3030362078

DOWNLOAD EBOOK

This book introduces numerical methods for processing datasets which may be of any form, illustrating adequately computational resolution of environmental alongside the use of open source libraries. This book solves the challenges of misrepresentation of datasets that are relevant directly or indirectly to the research. It illustrates new ways of screening datasets or images for maximum utilization. The adoption of various numerical methods in dataset treatment would certainly create a new scientific approach. The book enlightens researchers on how to analyse measurements to ensure 100% utilization. It introduces new ways of data treatment that are based on a sound mathematical and computational approach.


Advanced Numerical Methods for Complex Environmental Models: Needs and Availability

Advanced Numerical Methods for Complex Environmental Models: Needs and Availability

Author: István Faragó

Publisher: Bentham Science Publishers

Published: 2013-12-10

Total Pages: 437

ISBN-13: 160805778X

DOWNLOAD EBOOK

High air pollution levels pose a significant threat to plants, animals and human beings. Efforts by researchers are directed towards keeping air pollution levels below well defined ‘critical‘ levels in order to maintain a sustainable atmosphere and environmental system. The application of advanced mathematical models is important for researchers to achieve this goal as efficiently as possible. Mathematical models can be used to predict answers to many important questions about the environment. This application comes with several complex theoretical and practical obstacles which need to be resolved. A successfully applicable mathematical model needs to enable researchers to • Mathematically describe all important physical and chemical processes. • Apply fast and sufficiently accurate numerical methods. • Ensure that the model runs efficiently on modern high speed computers. • Use high quality input data, both meteorological data and emission inventories, in the runs. • Verify the model results by comparing them with reliable measurements taken in different parts of the spatial domain of the model. • Carry out long series of sensitivity experiments to check the response of the model to changes of different key parameters. • Visualize and animate the output results in order to make them easily understandable even to non-specialists. This monograph thoroughly describes mathematical methods useful for various situations in environmental modeling - including finite difference methods, splitting methods, parallel computation, etc. - and provides a framework for resolving problems posed in relation to the points listed above. Chapters are written by well-known specialists making this book a handy reference for researchers, university teachers and students working and studying in the areas of air pollution, meteorology, applied mathematics and computer science.


Introduction to Environmental Modeling

Introduction to Environmental Modeling

Author: William G. Gray

Publisher: Cambridge University Press

Published: 2017

Total Pages: 449

ISBN-13: 1107571693

DOWNLOAD EBOOK

This textbook presents the timeless basic physical and mathematical principles and philosophy of environmental modeling to students who need to be taught how to think in a different way than they would for more narrowly-defined engineering or physics problems. Examples come from a range of hydrologic, atmospheric, and geophysical problems.


Mathematical Problems in Meteorological Modelling

Mathematical Problems in Meteorological Modelling

Author: András Bátkai

Publisher: Springer

Published: 2016-11-08

Total Pages: 272

ISBN-13: 3319401572

DOWNLOAD EBOOK

This book deals with mathematical problems arising in the context of meteorological modelling. It gathers and presents some of the most interesting and important issues from the interaction of mathematics and meteorology. It is unique in that it features contributions on topics like data assimilation, ensemble prediction, numerical methods, and transport modelling, from both mathematical and meteorological perspectives. The derivation and solution of all kinds of numerical prediction models require the application of results from various mathematical fields. The present volume is divided into three parts, moving from mathematical and numerical problems through air quality modelling, to advanced applications in data assimilation and probabilistic forecasting. The book arose from the workshop “Mathematical Problems in Meteorological Modelling” held in Budapest in May 2014 and organized by the ECMI Special Interest Group on Numerical Weather Prediction. Its main objective is to highlight the beauty of the development fields discussed, to demonstrate their mathematical complexity and, more importantly, to encourage mathematicians to contribute to the further success of such practical applications as weather forecasting and climate change projections. Written by leading experts in the field, the book provides an attractive and diverse introduction to areas in which mathematicians and modellers from the meteorological community can cooperate and help each other solve the problems that operational weather centres face, now and in the near future. Readers engaged in meteorological research will become more familiar with the corresponding mathematical background, while mathematicians working in numerical analysis, partial differential equations, or stochastic analysis will be introduced to further application fields of their research area, and will find stimulation and motivation for their future research work.


Numerical Analysis and Its Applications

Numerical Analysis and Its Applications

Author: Ivan Dimov

Publisher: Springer

Published: 2013-10-01

Total Pages: 583

ISBN-13: 3642415156

DOWNLOAD EBOOK

This book constitutes thoroughly revised selected papers of the 5th International Conference on Numerical Analysis and Its Applications, NAA 2012, held in Lozenetz, Bulgaria, in June 2012. The 65 revised papers presented were carefully reviewed and selected from various submissions. The papers cover a broad area of topics of interest such as numerical approximation and computational geometry; numerical linear algebra and numerical solution of transcendental equation; numerical methods for differential equations; numerical stochastics, numerical modeling; and high performance scientific computing.


Large-Scale Scientific Computing

Large-Scale Scientific Computing

Author: Ivan Lirkov

Publisher: Springer

Published: 2014-06-26

Total Pages: 653

ISBN-13: 3662438801

DOWNLOAD EBOOK

This book constitutes the thoroughly refereed post-conference proceedings of the 9th International Conference on Large-Scale Scientific Computations, LSSC 2013, held in Sozopol, Bulgaria, in June 2013. The 74 revised full papers presented together with 5 plenary and invited papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on numerical modeling of fluids and structures; control and uncertain systems; Monte Carlo methods: theory, applications and distributed computing; theoretical and algorithmic advances in transport problems; applications of metaheuristics to large-scale problems; modeling and numerical simulation of processes in highly heterogeneous media; large-scale models: numerical methods, parallel computations and applications; numerical solvers on many-core systems; cloud and grid computing for resource-intensive scientific applications.


Progress in Industrial Mathematics at ECMI 2012

Progress in Industrial Mathematics at ECMI 2012

Author: Magnus Fontes

Publisher: Springer

Published: 2014-05-14

Total Pages: 458

ISBN-13: 3319053655

DOWNLOAD EBOOK

This book contains the proceedings of the 17th European Conference on Mathematics for Industry, ECMI2012, held in Lund, Sweden, July 2012, at which ECMI celebrated its 25th anniversary. It covers mathematics in a wide range of applications and methods, from circuit and electromagnetic devices, environment, fibers, flow, medicine, robotics and automotive industry, further applications to methods and education. The book includes contributions from leading figures in business, science and academia that promote the application of mathematics to industry and emphasize industrial sectors that offer the most exciting opportunities. The contributions reinforce the role of mathematics as being a catalyst for innovation as well as an overarching resource for industry and business. The book features an accessible presentation of real-world problems in industry and finance, provides insight and tools for engineers and scientists who will help them to solve similar problems and offers modeling and simulation techniques that will provide mathematicians with a source of fresh ideas and inspiration.


Richardson Extrapolation

Richardson Extrapolation

Author: Zahari Zlatev

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2017-11-07

Total Pages: 310

ISBN-13: 3110533006

DOWNLOAD EBOOK

Scientists and engineers are mainly using Richardson extrapolation as a computational tool for increasing the accuracy of various numerical algorithms for the treatment of systems of ordinary and partial differential equations and for improving the computational efficiency of the solution process by the automatic variation of the time-stepsizes. A third issue, the stability of the computations, is very often the most important one and, therefore, it is the major topic studied in all chapters of this book. Clear explanations and many examples make this text an easy-to-follow handbook for applied mathematicians, physicists and engineers working with scientific models based on differential equations. Contents The basic properties of Richardson extrapolation Richardson extrapolation for explicit Runge-Kutta methods Linear multistep and predictor-corrector methods Richardson extrapolation for some implicit methods Richardson extrapolation for splitting techniques Richardson extrapolation for advection problems Richardson extrapolation for some other problems General conclusions