Descriptive Set Theory and Definable Forcing

Descriptive Set Theory and Definable Forcing

Author: Jindřich Zapletal

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 158

ISBN-13: 0821834509

DOWNLOAD EBOOK

Focuses on the relationship between definable forcing and descriptive set theory; the forcing serves as a tool for proving independence of inequalities between cardinal invariants of the continuum.


Classical Descriptive Set Theory

Classical Descriptive Set Theory

Author: Alexander Kechris

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 419

ISBN-13: 1461241901

DOWNLOAD EBOOK

Descriptive set theory has been one of the main areas of research in set theory for almost a century. This text presents a largely balanced approach to the subject, which combines many elements of the different traditions. It includes a wide variety of examples, more than 400 exercises, and applications, in order to illustrate the general concepts and results of the theory.


Forcing For Mathematicians

Forcing For Mathematicians

Author: Nik Weaver

Publisher: World Scientific

Published: 2014-01-24

Total Pages: 153

ISBN-13: 9814566020

DOWNLOAD EBOOK

Ever since Paul Cohen's spectacular use of the forcing concept to prove the independence of the continuum hypothesis from the standard axioms of set theory, forcing has been seen by the general mathematical community as a subject of great intrinsic interest but one that is technically so forbidding that it is only accessible to specialists. In the past decade, a series of remarkable solutions to long-standing problems in C*-algebra using set-theoretic methods, many achieved by the author and his collaborators, have generated new interest in this subject. This is the first book aimed at explaining forcing to general mathematicians. It simultaneously makes the subject broadly accessible by explaining it in a clear, simple manner, and surveys advanced applications of set theory to mainstream topics.


Set Theory of the Continuum

Set Theory of the Continuum

Author: Haim Judah

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 417

ISBN-13: 1461397545

DOWNLOAD EBOOK

Primarily consisting of talks presented at a workshop at the MSRI during its "Logic Year" 1989-90, this volume is intended to reflect the whole spectrum of activities in set theory. The first section of the book comprises the invited papers surveying the state of the art in a wide range of topics of set-theoretic research. The second section includes research papers on various aspects of set theory and its relation to algebra and topology. Contributors include: J.Bagaria, T. Bartoszynski, H. Becker, P. Dehornoy, Q. Feng, M. Foreman, M. Gitik, L. Harrington, S. Jackson, H. Judah, W. Just, A.S. Kechris, A. Louveau, S. MacLane, M. Magidor, A.R.D. Mathias, G. Melles, W.J. Mitchell, S. Shelah, R.A. Shore, R.I. Soare, L.J. Stanley, B. Velikovic, H. Woodin.


Sets And Computations

Sets And Computations

Author: Sy-david Friedman

Publisher: World Scientific

Published: 2017-06-22

Total Pages: 280

ISBN-13: 9813223537

DOWNLOAD EBOOK

The contents in this volume are based on the program Sets and Computations that was held at the Institute for Mathematical Sciences, National University of Singapore from 30 March until 30 April 2015. This special collection reports on important and recent interactions between the fields of Set Theory and Computation Theory. This includes the new research areas of computational complexity in set theory, randomness beyond the hyperarithmetic, powerful extensions of Goodstein's theorem and the capturing of large fragments of set theory via elementary-recursive structures.Further chapters are concerned with central topics within Set Theory, including cardinal characteristics, Fraïssé limits, the set-generic multiverse and the study of ideals. Also Computation Theory, which includes computable group theory and measure-theoretic aspects of Hilbert's Tenth Problem. A volume of this broad scope will appeal to a wide spectrum of researchers in mathematical logic.


The Structure of Models of Peano Arithmetic

The Structure of Models of Peano Arithmetic

Author: Roman Kossak

Publisher: Oxford University Press

Published: 2006-06-29

Total Pages: 326

ISBN-13: 0198568274

DOWNLOAD EBOOK

Aimed at graduate students, research logicians and mathematicians, this much-awaited text covers over 40 years of work on relative classification theory for nonstandard models of arithmetic. The book covers basic isomorphism invariants: families of type realized in a model, lattices of elementary substructures and automorphism groups.


Combinatorial Set Theory

Combinatorial Set Theory

Author: Lorenz J. Halbeisen

Publisher: Springer

Published: 2017-12-20

Total Pages: 586

ISBN-13: 3319602314

DOWNLOAD EBOOK

This book, now in a thoroughly revised second edition, provides a comprehensive and accessible introduction to modern set theory. Following an overview of basic notions in combinatorics and first-order logic, the author outlines the main topics of classical set theory in the second part, including Ramsey theory and the axiom of choice. The revised edition contains new permutation models and recent results in set theory without the axiom of choice. The third part explains the sophisticated technique of forcing in great detail, now including a separate chapter on Suslin’s problem. The technique is used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In the final part, some topics of classical set theory are revisited and further developed in light of forcing, with new chapters on Sacks Forcing and Shelah’s astonishing construction of a model with finitely many Ramsey ultrafilters. Written for graduate students in axiomatic set theory, Combinatorial Set Theory will appeal to all researchers interested in the foundations of mathematics. With extensive reference lists and historical remarks at the end of each chapter, this book is suitable for self-study.


Ordinal Computability

Ordinal Computability

Author: Merlin Carl

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-09-23

Total Pages: 344

ISBN-13: 3110496151

DOWNLOAD EBOOK

Ordinal Computability discusses models of computation obtained by generalizing classical models, such as Turing machines or register machines, to transfinite working time and space. In particular, recognizability, randomness, and applications to other areas of mathematics are covered.


Geometric Set Theory

Geometric Set Theory

Author: Paul B. Larson

Publisher: American Mathematical Soc.

Published: 2020-07-16

Total Pages: 345

ISBN-13: 1470454629

DOWNLOAD EBOOK

This book introduces a new research direction in set theory: the study of models of set theory with respect to their extensional overlap or disagreement. In Part I, the method is applied to isolate new distinctions between Borel equivalence relations. Part II contains applications to independence results in Zermelo–Fraenkel set theory without Axiom of Choice. The method makes it possible to classify in great detail various paradoxical objects obtained using the Axiom of Choice; the classifying criterion is a ZF-provable implication between the existence of such objects. The book considers a broad spectrum of objects from analysis, algebra, and combinatorics: ultrafilters, Hamel bases, transcendence bases, colorings of Borel graphs, discontinuous homomorphisms between Polish groups, and many more. The topic is nearly inexhaustible in its variety, and many directions invite further investigation.


Computability, Forcing and Descriptive Set Theory

Computability, Forcing and Descriptive Set Theory

Author: Douglas Cenzer

Publisher: World Scientific Publishing Company

Published: 2019-12-31

Total Pages: 200

ISBN-13: 9789813228221

DOWNLOAD EBOOK

This volume presents some exciting new developments occurring on the interface between set theory and computability as well as their applications in algebra, analysis and topology. These include effective versions of Borel equivalence, Borel reducibility and Borel determinacy. It also covers algorithmic randomness and dimension, Ramsey sets and Ramsey spaces. Many of these topics are being discussed in the NSF-supported annual Southeastern Logic Symposium. Contents: Limits of the Kucerea-Gacs Coding Method (George Barmpalias and Andrew Lewis-Pye);Infinitary partition properties of sums of selective ultrafilters (Andreas Blass);Semiselective Coideals and Ramsey Sets (Carlos DiPrisco and Leonardo Pacheco);Survey on Topological Ramsey Spaces Dense in Forcings (Natasha Dobrinen);Higher Computability in the Reverse Mathematics of Borel Determinacy (Sherwood Hachtman);Computability and Definability (Valentina Harizanov);A Ramsey Space of Infinite Polyhedra and the Random Polyhedron (Jose G Mijares Palacios and Gabriel Padilla);Computable Reducibility for Cantor Space (Russell G Miller);Information vs Dimension - An Algorithmic Perspective (Jan Reimann); Readership: Graduate students and researchers interested in the interface between set theory and computability.