Compressed Sensing & Sparse Filtering

Compressed Sensing & Sparse Filtering

Author: Avishy Y. Carmi

Publisher: Springer Science & Business Media

Published: 2013-09-13

Total Pages: 505

ISBN-13: 364238398X

DOWNLOAD EBOOK

This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related approaches. Each methodology has its own formalities for dealing with such problems. As an example, in the Bayesian approach, sparseness promoting priors such as Laplace and Cauchy are normally used for penalising improbable model variables, thus promoting low complexity solutions. Compressed sensing techniques and homotopy-type solutions, such as the LASSO, utilise l1-norm penalties for obtaining sparse solutions using fewer observations than conventionally needed. The book emphasizes on the role of sparsity as a machinery for promoting low complexity representations and likewise its connections to variable selection and dimensionality reduction in various engineering problems. This book is intended for researchers, academics and practitioners with interest in various aspects and applications of sparse signal processing.


Compressed Sensing

Compressed Sensing

Author: Yonina C. Eldar

Publisher: Cambridge University Press

Published: 2012-05-17

Total Pages: 557

ISBN-13: 1107005582

DOWNLOAD EBOOK

A detailed presentation of compressed sensing by leading researchers, covering the most significant theoretical and application-oriented advances.


Handbook of Mathematical Methods in Imaging

Handbook of Mathematical Methods in Imaging

Author: Otmar Scherzer

Publisher: Springer Science & Business Media

Published: 2010-11-23

Total Pages: 1626

ISBN-13: 0387929193

DOWNLOAD EBOOK

The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.


Sparse Representations and Compressive Sensing for Imaging and Vision

Sparse Representations and Compressive Sensing for Imaging and Vision

Author: Vishal M. Patel

Publisher: Springer Science & Business Media

Published: 2013-02-11

Total Pages: 111

ISBN-13: 1461463815

DOWNLOAD EBOOK

Compressed sensing or compressive sensing is a new concept in signal processing where one measures a small number of non-adaptive linear combinations of the signal. These measurements are usually much smaller than the number of samples that define the signal. From these small numbers of measurements, the signal is then reconstructed by non-linear procedure. Compressed sensing has recently emerged as a powerful tool for efficiently processing data in non-traditional ways. In this book, we highlight some of the key mathematical insights underlying sparse representation and compressed sensing and illustrate the role of these theories in classical vision, imaging and biometrics problems.


Compressed Sensing in Radar Signal Processing

Compressed Sensing in Radar Signal Processing

Author: Antonio De Maio

Publisher: Cambridge University Press

Published: 2019-10-17

Total Pages: 381

ISBN-13: 110857694X

DOWNLOAD EBOOK

Learn about the most recent theoretical and practical advances in radar signal processing using tools and techniques from compressive sensing. Providing a broad perspective that fully demonstrates the impact of these tools, the accessible and tutorial-like chapters cover topics such as clutter rejection, CFAR detection, adaptive beamforming, random arrays for radar, space-time adaptive processing, and MIMO radar. Each chapter includes coverage of theoretical principles, a detailed review of current knowledge, and discussion of key applications, and also highlights the potential benefits of using compressed sensing algorithms. A unified notation and numerous cross-references between chapters make it easy to explore different topics side by side. Written by leading experts from both academia and industry, this is the ideal text for researchers, graduate students and industry professionals working in signal processing and radar.


Sparse Coding and Compressed Sensing

Sparse Coding and Compressed Sensing

Author: William Edward Hahn

Publisher:

Published: 2016

Total Pages: 279

ISBN-13:

DOWNLOAD EBOOK

For an 8-bit grayscale image patch of size n x n, the number of distinguishable signals is 256(n2). Natural images (e.g.,photographs of a natural scene) comprise a very small subset of these possible signals. Traditional image and video processing relies on band-limited or low-pass signal models. In contrast, we will explore the observation that most signals of interest are sparse, i.e. in a particular basis most of the expansion coefficients will be zero. Recent developments in sparse modeling and L1 optimization have allowed for extraordinary applications such as the single pixel camera, as well as computer vision systems that can exceed human performance. Here we present a novel neural network architecture combining a sparse filter model and locally competitive algorithms (LCAs), and demonstrate the networks ability to classify human actions from video. Sparse filtering is an unsupervised feature learning algorithm designed to optimize the sparsity of the feature distribution directly without having the need to model the data distribution. LCAs are defined by a system of di↵erential equations where the initial conditions define an optimization problem and iv the dynamics converge to a sparse decomposition of the input vector. We applied this architecture to train a classifier on categories of motion in human action videos. Inputs to the network were small 3D patches taken from frame di↵erences in the videos. Dictionaries were derived for each action class and then activation levels for each dictionary were assessed during reconstruction of a novel test patch. We discuss how this sparse modeling approach provides a natural framework for multi-sensory and multimodal data processing including RGB video, RGBD video, hyper-spectral video, and stereo audio/video streams.


A Mathematical Introduction to Compressive Sensing

A Mathematical Introduction to Compressive Sensing

Author: Simon Foucart

Publisher: Springer Science & Business Media

Published: 2013-08-13

Total Pages: 634

ISBN-13: 0817649484

DOWNLOAD EBOOK

At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.


Compressive Sensing for Urban Radar

Compressive Sensing for Urban Radar

Author: Moeness Amin

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 508

ISBN-13: 1466597852

DOWNLOAD EBOOK

With the emergence of compressive sensing and sparse signal reconstruction, approaches to urban radar have shifted toward relaxed constraints on signal sampling schemes in time and space, and to effectively address logistic difficulties in data acquisition. Traditionally, these challenges have hindered high resolution imaging by restricting both bandwidth and aperture, and by imposing uniformity and bounds on sampling rates. Compressive Sensing for Urban Radar is the first book to focus on a hybrid of two key areas: compressive sensing and urban sensing. It explains how reliable imaging, tracking, and localization of indoor targets can be achieved using compressed observations that amount to a tiny percentage of the entire data volume. Capturing the latest and most important advances in the field, this state-of-the-art text: Covers both ground-based and airborne synthetic aperture radar (SAR) and uses different signal waveforms Demonstrates successful applications of compressive sensing for target detection and revealing building interiors Describes problems facing urban radar and highlights sparse reconstruction techniques applicable to urban environments Deals with both stationary and moving indoor targets in the presence of wall clutter and multipath exploitation Provides numerous supporting examples using real data and computational electromagnetic modeling Featuring 13 chapters written by leading researchers and experts, Compressive Sensing for Urban Radar is a useful and authoritative reference for radar engineers and defense contractors, as well as a seminal work for graduate students and academia.


Compressive Sensing for Wireless Communication

Compressive Sensing for Wireless Communication

Author: Radha Sankararajan

Publisher: CRC Press

Published: 2022-09-01

Total Pages: 493

ISBN-13: 1000794369

DOWNLOAD EBOOK

Compressed Sensing (CS) is a promising method that recovers the sparse and compressible signals from severely under-sampled measurements. CS can be applied to wireless communication to enhance its capabilities. As this technology is proliferating, it is possible to explore its need and benefits for emerging applicationsCompressive Sensing for Wireless Communication provides:• A clear insight into the basics of compressed sensing• A thorough exploration of applying CS to audio, image and computer vision• Different dimensions of applying CS in Cognitive radio networks• CS in wireless sensor network for spatial compression and projection• Real world problems/projects that can be implemented and tested• Efficient methods to sample and reconstruct the images in resource constrained WMSN environmentThis book provides the details of CS and its associated applications in a thorough manner. It lays a direction for students and new engineers and prepares them for developing new tasks within the field of CS. It is an indispensable companion for practicing engineers who wish to learn about the emerging areas of interest.


Compressed Sensing and Its Applications

Compressed Sensing and Its Applications

Author: Holger Boche

Publisher: Birkhäuser

Published: 2019-08-13

Total Pages: 305

ISBN-13: 3319730746

DOWNLOAD EBOOK

The chapters in this volume highlight the state-of-the-art of compressed sensing and are based on talks given at the third international MATHEON conference on the same topic, held from December 4-8, 2017 at the Technical University in Berlin. In addition to methods in compressed sensing, chapters provide insights into cutting edge applications of deep learning in data science, highlighting the overlapping ideas and methods that connect the fields of compressed sensing and deep learning. Specific topics covered include: Quantized compressed sensing Classification Machine learning Oracle inequalities Non-convex optimization Image reconstruction Statistical learning theory This volume will be a valuable resource for graduate students and researchers in the areas of mathematics, computer science, and engineering, as well as other applied scientists exploring potential applications of compressed sensing.