Complexity Theory and Cryptology

Complexity Theory and Cryptology

Author: Jörg Rothe

Publisher: Springer Science & Business Media

Published: 2005-07-22

Total Pages: 488

ISBN-13: 3540221476

DOWNLOAD EBOOK

Modern cryptology increasingly employs mathematically rigorous concepts and methods from complexity theory. Conversely, current research topics in complexity theory are often motivated by questions and problems from cryptology. This book takes account of this situation, and therefore its subject is what may be dubbed "cryptocomplexity'', a kind of symbiosis of these two areas. This book is written for undergraduate and graduate students of computer science, mathematics, and engineering, and can be used for courses on complexity theory and cryptology, preferably by stressing their interrelation. Moreover, it may serve as a valuable source for researchers, teachers, and practitioners working in these fields. Starting from scratch, it works its way to the frontiers of current research in these fields and provides a detailed overview of their history and their current research topics and challenges.


Complexity Theory and Cryptology

Complexity Theory and Cryptology

Author: Jörg Rothe

Publisher: Springer Science & Business Media

Published: 2005-11-10

Total Pages: 488

ISBN-13: 3540285202

DOWNLOAD EBOOK

Modern cryptology increasingly employs mathematically rigorous concepts and methods from complexity theory. Conversely, current research topics in complexity theory are often motivated by questions and problems from cryptology. This book takes account of this situation, and therefore its subject is what may be dubbed "cryptocomplexity'', a kind of symbiosis of these two areas. This book is written for undergraduate and graduate students of computer science, mathematics, and engineering, and can be used for courses on complexity theory and cryptology, preferably by stressing their interrelation. Moreover, it may serve as a valuable source for researchers, teachers, and practitioners working in these fields. Starting from scratch, it works its way to the frontiers of current research in these fields and provides a detailed overview of their history and their current research topics and challenges.


Computational Complexity

Computational Complexity

Author: Sanjeev Arora

Publisher: Cambridge University Press

Published: 2009-04-20

Total Pages: 609

ISBN-13: 0521424267

DOWNLOAD EBOOK

New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.


Cryptographic Applications of Analytic Number Theory

Cryptographic Applications of Analytic Number Theory

Author: Igor Shparlinski

Publisher: Springer Science & Business Media

Published: 2003-02-12

Total Pages: 434

ISBN-13: 9783764366544

DOWNLOAD EBOOK

The book introduces new ways of using analytic number theory in cryptography and related areas, such as complexity theory and pseudorandom number generation. Cryptographers and number theorists will find this book useful. The former can learn about new number theoretic techniques which have proved to be invaluable cryptographic tools, the latter about new challenging areas of applications of their skills.


Tutorials on the Foundations of Cryptography

Tutorials on the Foundations of Cryptography

Author: Yehuda Lindell

Publisher: Springer

Published: 2017-04-05

Total Pages: 461

ISBN-13: 331957048X

DOWNLOAD EBOOK

This is a graduate textbook of advanced tutorials on the theory of cryptography and computational complexity. In particular, the chapters explain aspects of garbled circuits, public-key cryptography, pseudorandom functions, one-way functions, homomorphic encryption, the simulation proof technique, and the complexity of differential privacy. Most chapters progress methodically through motivations, foundations, definitions, major results, issues surrounding feasibility, surveys of recent developments, and suggestions for further study. This book honors Professor Oded Goldreich, a pioneering scientist, educator, and mentor. Oded was instrumental in laying down the foundations of cryptography, and he inspired the contributing authors, Benny Applebaum, Boaz Barak, Andrej Bogdanov, Iftach Haitner, Shai Halevi, Yehuda Lindell, Alon Rosen, and Salil Vadhan, themselves leading researchers on the theory of cryptography and computational complexity. The book is appropriate for graduate tutorials and seminars, and for self-study by experienced researchers, assuming prior knowledge of the theory of cryptography.


Group Theoretic Cryptography

Group Theoretic Cryptography

Author: Maria Isabel Gonzalez Vasco

Publisher: CRC Press

Published: 2015-04-01

Total Pages: 244

ISBN-13: 1584888377

DOWNLOAD EBOOK

Group theory appears to be a promising source of hard computational problems for deploying new cryptographic constructions. This reference focuses on the specifics of using groups, including in particular non-Abelian groups, in the field of cryptography. It provides an introduction to cryptography with emphasis on the group theoretic perspective, making it one of the first books to use this approach. The authors provide the needed cryptographic and group theoretic concepts, full proofs of essential theorems, and formal security evaluations of the cryptographic schemes presented. They also provide references for further reading and exercises at the end of each chapter.


Coding Theory And Cryptology

Coding Theory And Cryptology

Author: Harald Niederreiter

Publisher: World Scientific

Published: 2002-12-03

Total Pages: 460

ISBN-13: 981448766X

DOWNLOAD EBOOK

The inaugural research program of the Institute for Mathematical Sciences at the National University of Singapore took place from July to December 2001 and was devoted to coding theory and cryptology. As part of the program, tutorials for graduate students and junior researchers were given by world-renowned scholars. These tutorials covered fundamental aspects of coding theory and cryptology and were designed to prepare for original research in these areas. The present volume collects the expanded lecture notes of these tutorials. The topics range from mathematical areas such as computational number theory, exponential sums and algebraic function fields through coding-theory subjects such as extremal problems, quantum error-correcting codes and algebraic-geometry codes to cryptologic subjects such as stream ciphers, public-key infrastructures, key management, authentication schemes and distributed system security.


Complexity of Lattice Problems

Complexity of Lattice Problems

Author: Daniele Micciancio

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 229

ISBN-13: 1461508975

DOWNLOAD EBOOK

Lattices are geometric objects that can be pictorially described as the set of intersection points of an infinite, regular n-dimensional grid. De spite their apparent simplicity, lattices hide a rich combinatorial struc ture, which has attracted the attention of great mathematicians over the last two centuries. Not surprisingly, lattices have found numerous ap plications in mathematics and computer science, ranging from number theory and Diophantine approximation, to combinatorial optimization and cryptography. The study of lattices, specifically from a computational point of view, was marked by two major breakthroughs: the development of the LLL lattice reduction algorithm by Lenstra, Lenstra and Lovasz in the early 80's, and Ajtai's discovery of a connection between the worst-case and average-case hardness of certain lattice problems in the late 90's. The LLL algorithm, despite the relatively poor quality of the solution it gives in the worst case, allowed to devise polynomial time solutions to many classical problems in computer science. These include, solving integer programs in a fixed number of variables, factoring polynomials over the rationals, breaking knapsack based cryptosystems, and finding solutions to many other Diophantine and cryptanalysis problems.


Group-based Cryptography

Group-based Cryptography

Author: Alexei Myasnikov

Publisher: Springer Science & Business Media

Published: 2008-11-04

Total Pages: 192

ISBN-13: 3764388277

DOWNLOAD EBOOK

Covering relations between three different areas of mathematics and theoretical computer science, this book explores how non-commutative (infinite) groups, which are typically studied in combinatorial group theory, can be used in public key cryptography.