Complexity and Complex Ecological Systems

Complexity and Complex Ecological Systems

Author: Stanislaw Sieniutycz

Publisher: Elsevier

Published: 2023-03-22

Total Pages: 190

ISBN-13: 0443192383

DOWNLOAD EBOOK

Complexity and Complex Ecological Systems is an extension of Elsevier's 2021 book Complexity and Complex Chemo-Electric Systems directed toward the analysis and synthesis of diverse ecological processes running in heterogeneous macrosystems. Contemporary advanced techniques such as averaged analysis, food webs approaches, and classical optimization results along with some numerical algorithms are commonly used in ecosystems. This book treats ecological systems as specific functional integrities. In Complexity and Complex Ecological Systems, one can observe how various types of ecological heterogeneities can contribute to flows of living and inanimate parts of the moving pseudo-continuum. This book is a valuable reference for scientists, engineers, and graduate students of environmental, chemical, and biological engineering, helping them better understand complex macroscopic systems and enhance their technical skills in theoretical and practical research. - Covers the basic aspects of modeling, analysis, synthesis, and optimization of ecological systems - Contains theory of selected ecosystems and explanations of how it can be used in applications - Includes original drawings and drafts that illustrate the properties of diverse ecosystems - Written by an expert in advanced methods of biophysics and macroscopic physics


Diversity and Complexity

Diversity and Complexity

Author: Scott E. Page

Publisher: Princeton University Press

Published: 2010-11-08

Total Pages: 304

ISBN-13: 1400835143

DOWNLOAD EBOOK

This book provides an introduction to the role of diversity in complex adaptive systems. A complex system--such as an economy or a tropical ecosystem--consists of interacting adaptive entities that produce dynamic patterns and structures. Diversity plays a different role in a complex system than it does in an equilibrium system, where it often merely produces variation around the mean for performance measures. In complex adaptive systems, diversity makes fundamental contributions to system performance. Scott Page gives a concise primer on how diversity happens, how it is maintained, and how it affects complex systems. He explains how diversity underpins system level robustness, allowing for multiple responses to external shocks and internal adaptations; how it provides the seeds for large events by creating outliers that fuel tipping points; and how it drives novelty and innovation. Page looks at the different kinds of diversity--variations within and across types, and distinct community compositions and interaction structures--and covers the evolution of diversity within complex systems and the factors that determine the amount of maintained diversity within a system. Provides a concise and accessible introduction Shows how diversity underpins robustness and fuels tipping points Covers all types of diversity The essential primer on diversity in complex adaptive systems


Resolving Ecosystem Complexity

Resolving Ecosystem Complexity

Author: Oswald J. Schmitz

Publisher: Princeton University Press

Published: 2010-07-01

Total Pages: 193

ISBN-13: 1400834171

DOWNLOAD EBOOK

An ecosystem's complexity develops from the vast numbers of species interacting in ecological communities. The nature of these interactions, in turn, depends on environmental context. How do these components together influence an ecosystem's behavior as a whole? Can ecologists resolve an ecosystem's complexity in order to predict its response to disturbances? Resolving Ecosystem Complexity develops a framework for anticipating the ways environmental context determines the functioning of ecosystems. Oswald Schmitz addresses the critical questions of contemporary ecology: How should an ecosystem be conceptualized to blend its biotic and biophysical components? How should evolutionary ecological principles be used to derive an operational understanding of complex, adaptive ecosystems? How should the relationship between the functional biotic diversity of ecosystems and their properties be understood? Schmitz begins with the universal concept that ecosystems are comprised of species that consume resources and which are then resources for other consumers. From this, he deduces a fundamental rule or evolutionary ecological mechanism for explaining context dependency: individuals within a species trade off foraging gains against the risk of being consumed by predators. Through empirical examples, Schmitz illustrates how species use evolutionary ecological strategies to negotiate a predator-eat-predator world, and he suggests that the implications of species trade-offs are critical to making ecology a predictive science. Bridging the traditional divides between individuals, populations, and communities in ecology, Resolving Ecosystem Complexity builds a systematic foundation for thinking about natural systems.


Hierarchy

Hierarchy

Author: T. F. H. Allen

Publisher: University of Chicago Press

Published: 2017-11-10

Total Pages: 424

ISBN-13: 022648968X

DOWNLOAD EBOOK

Ecosystems are incredibly complex, non-linear structures and self-organized entities; they cannot be described by simple models or by statistical approaches. Within each ecosystem are scores of individuals interacting continuously with others and with their biotic and abiotic surroundings, over vast geographic spaces, and over varying time scales as well. To approach the enormity of this complexity, ecologists have developed tools to simplify and aggregate information, and among them is Hierarchy Theory. Instead of analyzing the whole structure to understand the functions of the system, Hierarchy Theory analyzes hierarchical levels only and the interactions between them. It draws upon two different paradigms of complexity, reductionism and holism, adapting the most useful features of each into a viable means of studying ecosystems. It reduces the amount of data the researcher has to deal with, and it explicitly considers the relevant entities and interconnections of a larger complex system according to a specific research question. Originally published in 1982, Hierarchy was the first book to apply the tool to ecological systems. In the three decades since its publication, the work has influenced myriad large scale research initiatives in ecology, and this new, thoroughly revised edition reflects the assimilation of the theory in ecological research, and its successful application to the understanding of complex systems.


Self-Organization in Complex Ecosystems. (MPB-42)

Self-Organization in Complex Ecosystems. (MPB-42)

Author: Ricard Solé

Publisher: Princeton University Press

Published: 2012-01-06

Total Pages: 384

ISBN-13: 140084293X

DOWNLOAD EBOOK

Can physics be an appropriate framework for the understanding of ecological science? Most ecologists would probably agree that there is little relation between the complexity of natural ecosystems and the simplicity of any example derived from Newtonian physics. Though ecologists have long been interested in concepts originally developed by statistical physicists and later applied to explain everything from why stock markets crash to why rivers develop particular branching patterns, applying such concepts to ecosystems has remained a challenge. Self-Organization in Complex Ecosystems is the first book to clearly synthesize what we have learned about the usefulness of tools from statistical physics in ecology. Ricard Solé and Jordi Bascompte provide a comprehensive introduction to complex systems theory, and ask: do universal laws shape the structure of ecosystems, at least at some scales? They offer the most compelling array of theoretical evidence to date of the potential of nonlinear ecological interactions to generate nonrandom, self-organized patterns at all levels. Tackling classic ecological questions--from population dynamics to biodiversity to macroevolution--the book's novel presentation of theories and data shows the power of statistical physics and complexity in ecology. Self-Organization in Complex Ecosystems will be a staple resource for years to come for ecologists interested in complex systems theory as well as mathematicians and physicists interested in ecology.


Complexity Theory for a Sustainable Future

Complexity Theory for a Sustainable Future

Author: Jon Norberg

Publisher: Columbia University Press

Published: 2008-07-11

Total Pages: 340

ISBN-13: 9780231508865

DOWNLOAD EBOOK

Complexity theory illuminates the many interactions between natural and social systems, providing a better understanding of the general principles that can help solve some of today's most pressing environmental issues. Complexity theory was developed from key ideas in economics, physics, biology, and the social sciences and contributes to important new concepts for approaching issues of environmental sustainability such as resilience, scaling, and networks. Complexity Theory for a Sustainable Future is a hands-on treatment of this exciting new body of work and its applications, bridging the gap between theoretical and applied perspectives in the management of complex adaptive systems. Focusing primarily on natural resource management and community-based conservation, the book features contributions by leading scholars in the field, many of whom are among the leaders of the Resilience Alliance. Theoreticians will find a valuable synthesis of new ideas on resilience, sustainability, asymmetries, information processing, scaling, and networks. Managers and policymakers will benefit from the application of these ideas to practical approaches and empirical studies linked to social-ecological systems. Chapters present new twists on such existing approaches as scenario planning, scaling analyses, and adaptive management, and the book concludes with recommendations on how to manage natural resources, how to involve stakeholders in the dynamics of a system, and how to explain the difficult topic of scale. A vital reference for an emerging discipline, this volume provides a clearer understanding of the conditions required for systems self-organization, since the capacity of any system to self-organize is crucial for its sustainability over time.


Adaptive Co-Management

Adaptive Co-Management

Author: Derek Armitage

Publisher: UBC Press

Published: 2010-10-01

Total Pages: 362

ISBN-13: 0774859725

DOWNLOAD EBOOK

In Canada and around the world, new concerns with adaptive processes, feedback learning, and flexible partnerships are reshaping environmental governance. Meanwhile, ideas about collaboration and learning are converging around the idea of adaptive co-management. This book provides a comprehensive synthesis of the core concepts, strategies, and tools in this emerging field, informed by a diverse group of researchers and practitioners with over two decades of experience. It also offers a diverse set of case studies that reveal the challenges and implications of adaptive co-management thinking.


Landscapes of Collectivity in the Life Sciences

Landscapes of Collectivity in the Life Sciences

Author: Snait B. Gissis

Publisher: MIT Press

Published: 2018-01-12

Total Pages: 433

ISBN-13: 0262036851

DOWNLOAD EBOOK

Broad perspective on collectivity in the life sciences, from microorganisms to human consensus, and the theoretical and empirical opportunities and challenges. Many researchers and scholars in the life sciences have become increasingly critical of the traditional methodological focus on the individual. This volume counters such methodological individualism by exploring recent and influential work in the life sciences that utilizes notions of collectivity, sociality, rich interactions, and emergent phenomena as essential explanatory tools to handle numerous persistent scientific questions in the life sciences. The contributors consider case studies of collectivity that range from microorganisms to human consensus, discussing theoretical and empirical challenges and the innovative methods and solutions scientists have devised. The contributors offer historical, philosophical, and biological perspectives on collectivity, and describe collective phenomena seen in insects, the immune system, communication, and human collectivity, with examples ranging from cooperative transport in the longhorn crazy ant to the evolution of autobiographical memory. They examine ways of explaining collectivity, including case studies and modeling approaches, and explore collectivity's explanatory power. They present a comprehensive look at a specific case of collectivity: the Holobiont notion (the idea of a multi-species collective, a host and diverse microorganisms) and the hologenome theory (which posits that the holobiont and its hologenome are a unit of adaption). The volume concludes with reflections on the work of the late physicist Eshel Ben-Jacob, pioneer in the study of collective phenomena in living systems. Contributors Oren Bader, John Beatty, Dinah R. Davison, Daniel Dor, Ofer Feinerman, Raghavendra Gadagkar, Scott F. Gilbert, Snait B. Gissis, Deborah M. Gordon, James Griesemer, Zachariah I. Grochau-Wright, Erik R. Hanschen, Eva Jablonka, Mohit Kumar Jolly, Anat Kolumbus, Ehud Lamm, Herbert Levine, Arnon Levy, Xue-Fei Li, Elisabeth A. Lloyd, Yael Lubin, Eva Maria Luef, Ehud Meron, Richard E. Michod, Samir Okasha, Simone Pika, Joan Roughgarden, Eugene Rosenberg, Ayelet Shavit, Yael Silver, Alfred I. Tauber, Ilana Zilber-Rosenberg


Modelling Complex Ecological Dynamics

Modelling Complex Ecological Dynamics

Author: Fred Jopp

Publisher: Springer Science & Business Media

Published: 2011-02-11

Total Pages: 400

ISBN-13: 3642050298

DOWNLOAD EBOOK

Model development is of vital importance for understanding and management of ecological processes. Identifying the complex relationships between ecological patterns and processes is a crucial task. Ecological modelling—both qualitatively and quantitatively—plays a vital role in analysing ecological phenomena and for ecological theory. This textbook provides a unique overview of modelling approaches. Representing the state-of-the-art in modern ecology, it shows how to construct and work with various different model types. It introduces the background of each approach and its application in ecology. Differential equations, matrix approaches, individual-based models and many other relevant modelling techniques are explained and demonstrated with their use. The authors provide links to software tools and course materials. With chapters written by leading specialists, “Modelling Complex Ecological Dynamics” is an essential contribution to expand the qualification of students, teachers and scientists alike.