SPECIAL FUNCTIONS AND COMPLEX VARIABLES

SPECIAL FUNCTIONS AND COMPLEX VARIABLES

Author: SHAHNAZ BATHUL

Publisher: PHI Learning Pvt. Ltd.

Published: 2010-09-07

Total Pages: 534

ISBN-13: 8120341937

DOWNLOAD EBOOK

This well-received book, which is a new edition of Textbook of Engineering Mathematics: Special Functions and Complex Variables by the same author, continues to discuss two important topics—special functions and complex variables. It analyzes special functions such as gamma and beta functions, Legendre’s equation and function, and Bessel’s function. Besides, the text explains the notions of limit, continuity and differentiability by giving a thorough grounding on analytic functions and their relations with harmonic functions. In addition, the book introduces the exponential function of a complex variable and, with the help of this function, defines the trigonometric and hyperbolic functions and explains their properties. While discussing different mathematical concepts, the book analyzes a number of theorems such as Cauchy’s integral theorem for the integration of a complex variable, Taylor’s theorem for the analysis of complex power series, the residue theorem for evaluation of residues, besides the argument principle and Rouche’s theorem for the determination of the number of zeros of complex polynomials. Finally, the book gives a thorough exposition of conformal mappings and develops the theory of bilinear transformation. Intended as a text for engineering students, this book will also be useful for undergraduate and postgraduate students of Mathematics and students appearing in competitive examinations. What is New to This Edition : Chapters have been reorganized keeping in mind changes in the syllabi. A new chapter is exclusively devoted to Graph Theory.


Applied Complex Variables

Applied Complex Variables

Author: John W. Dettman

Publisher: Courier Corporation

Published: 2012-05-07

Total Pages: 514

ISBN-13: 0486158284

DOWNLOAD EBOOK

Fundamentals of analytic function theory — plus lucid exposition of 5 important applications: potential theory, ordinary differential equations, Fourier transforms, Laplace transforms, and asymptotic expansions. Includes 66 figures.


Analytic Functions of Several Complex Variables

Analytic Functions of Several Complex Variables

Author: Robert Clifford Gunning

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 338

ISBN-13: 0821821652

DOWNLOAD EBOOK

The theory of analytic functions of several complex variables enjoyed a period of remarkable development in the middle part of the twentieth century. This title intends to provide an extensive introduction to the Oka-Cartan theory and some of its applications, and to the general theory of analytic spaces.


Function Theory of One Complex Variable

Function Theory of One Complex Variable

Author: Robert Everist Greene

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 536

ISBN-13: 9780821839621

DOWNLOAD EBOOK

Complex analysis is one of the most central subjects in mathematics. It is compelling and rich in its own right, but it is also remarkably useful in a wide variety of other mathematical subjects, both pure and applied. This book is different from others in that it treats complex variables as a direct development from multivariable real calculus. As each new idea is introduced, it is related to the corresponding idea from real analysis and calculus. The text is rich with examples andexercises that illustrate this point. The authors have systematically separated the analysis from the topology, as can be seen in their proof of the Cauchy theorem. The book concludes with several chapters on special topics, including full treatments of special functions, the prime number theorem,and the Bergman kernel. The authors also treat $Hp$ spaces and Painleve's theorem on smoothness to the boundary for conformal maps. This book is a text for a first-year graduate course in complex analysis. It is an engaging and modern introduction to the subject, reflecting the authors' expertise both as mathematicians and as expositors.


Functions of Several Complex Variables and Their Singularities

Functions of Several Complex Variables and Their Singularities

Author: Wolfgang Ebeling

Publisher: American Mathematical Soc.

Published: 2007

Total Pages: 334

ISBN-13: 0821833197

DOWNLOAD EBOOK

The book provides an introduction to the theory of functions of several complex variables and their singularities, with special emphasis on topological aspects. The topics include Riemann surfaces, holomorphic functions of several variables, classification and deformation of singularities, fundamentals of differential topology, and the topology of singularities. The aim of the book is to guide the reader from the fundamentals to more advanced topics of recent research. All the necessary prerequisites are specified and carefully explained. The general theory is illustrated by various examples and applications.


Entire Functions of Several Complex Variables

Entire Functions of Several Complex Variables

Author: Pierre Lelong

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 283

ISBN-13: 3642703445

DOWNLOAD EBOOK

I - Entire functions of several complex variables constitute an important and original chapter in complex analysis. The study is often motivated by certain applications to specific problems in other areas of mathematics: partial differential equations via the Fourier-Laplace transformation and convolution operators, analytic number theory and problems of transcen dence, or approximation theory, just to name a few. What is important for these applications is to find solutions which satisfy certain growth conditions. The specific problem defines inherently a growth scale, and one seeks a solution of the problem which satisfies certain growth conditions on this scale, and sometimes solutions of minimal asymp totic growth or optimal solutions in some sense. For one complex variable the study of solutions with growth conditions forms the core of the classical theory of entire functions and, historically, the relationship between the number of zeros of an entire function f(z) of one complex variable and the growth of If I (or equivalently log If I) was the first example of a systematic study of growth conditions in a general setting. Problems with growth conditions on the solutions demand much more precise information than existence theorems. The correspondence between two scales of growth can be interpreted often as a correspondence between families of bounded sets in certain Frechet spaces. However, for applications it is of utmost importance to develop precise and explicit representations of the solutions.


Complex Variables and Their Applications

Complex Variables and Their Applications

Author: Anthony D. Osborne

Publisher: Addison Wesley

Published: 1999

Total Pages: 472

ISBN-13:

DOWNLOAD EBOOK

An understanding of functions of a complex variable, together with the importance of their applications, form an essential part of the study of mathematics. Complex Variables and their Applications assumes as little background knowledge of the reader as is practically possible, a sound knowledge of calculus and basic real analysis being the only essential pre-requisites. With an emphasis on clear and careful explanation, the book covers all the essential topics covered in a first course on Complex Variables, such as differentiation, integration and applications, Laurent series, residue theory and applications, and elementary conformal mappings. The reader is also introduced to the Schwarz-Christoffel transformation, Dirchlet problems, harmonic functions, analytic continuation, infinite products, asymptotic series and elliptic functions. Applications of complex variable theory to linear ordinary differential equations and integral transforms are also included. Complex Variables and their Applications is an ideal textbook and resource for second and final year students of mathematics, engineering and physics.


Functions of One Complex Variable

Functions of One Complex Variable

Author: J.B. Conway

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 323

ISBN-13: 1461599725

DOWNLOAD EBOOK

This book is intended as a textbook for a first course in the theory of functions of one complex variable for students who are mathematically mature enough to understand and execute E - I) arguments. The actual pre requisites for reading this book are quite minimal; not much more than a stiff course in basic calculus and a few facts about partial derivatives. The topics from advanced calculus that are used (e.g., Leibniz's rule for differ entiating under the integral sign) are proved in detail. Complex Variables is a subject which has something for all mathematicians. In addition to having applications to other parts of analysis, it can rightly claim to be an ancestor of many areas of mathematics (e.g., homotopy theory, manifolds). This view of Complex Analysis as "An Introduction to Mathe matics" has influenced the writing and selection of subject matter for this book. The other guiding principle followed is that all definitions, theorems, etc.


Visual Complex Functions

Visual Complex Functions

Author: Elias Wegert

Publisher: Springer Science & Business Media

Published: 2012-08-30

Total Pages: 374

ISBN-13: 3034801807

DOWNLOAD EBOOK

This book provides a systematic introduction to functions of one complex variable. Its novel feature is the consistent use of special color representations – so-called phase portraits – which visualize functions as images on their domains. Reading Visual Complex Functions requires no prerequisites except some basic knowledge of real calculus and plane geometry. The text is self-contained and covers all the main topics usually treated in a first course on complex analysis. With separate chapters on various construction principles, conformal mappings and Riemann surfaces it goes somewhat beyond a standard programme and leads the reader to more advanced themes. In a second storyline, running parallel to the course outlined above, one learns how properties of complex functions are reflected in and can be read off from phase portraits. The book contains more than 200 of these pictorial representations which endow individual faces to analytic functions. Phase portraits enhance the intuitive understanding of concepts in complex analysis and are expected to be useful tools for anybody working with special functions – even experienced researchers may be inspired by the pictures to new and challenging questions. Visual Complex Functions may also serve as a companion to other texts or as a reference work for advanced readers who wish to know more about phase portraits.