Complex Systems in the Social and Behavioral Sciences
Author: L. Douglas Kiel
Publisher:
Published: 2021-06-22
Total Pages: 448
ISBN-13: 9780472074884
DOWNLOAD EBOOKComplexity systems are at the heart of behavior
Read and Download eBook Full
Author: L. Douglas Kiel
Publisher:
Published: 2021-06-22
Total Pages: 448
ISBN-13: 9780472074884
DOWNLOAD EBOOKComplexity systems are at the heart of behavior
Author: Jie Zhou
Publisher: Springer Science & Business Media
Published: 2009-06-26
Total Pages: 1219
ISBN-13: 3642024661
DOWNLOAD EBOOKI was invited to join the Organizing Committee of the First International Conference on Complex Sciences: Theory and Applications (Complex 2009) as its ninth member. At that moment, eight distinguished colleagues, General Co-chairs Eugene Stanley and Gaoxi Xiao, Technical Co-chairs János Kertész and Bing-Hong Wang, Local Co-chairs Hengshan Wang and Hong-An Che, Publicity Team Shi Xiao and Yubo Wang, had spent hundreds of hours pushing the conference half way to its birth. Ever since then, I have been amazed to see hundreds of papers flooding in, reviewed and commented on by the TPC members. Finally, more than 200 contributions were - lected for the proceedings currently in your hands. They include about 200 papers from the main conference (selected from more than 320 submissions) and about 33 papers from the five collated workshops: Complexity Theory of Art and Music (COART) Causality in Complex Systems (ComplexCCS) Complex Engineering Networks (ComplexEN) Modeling and Analysis of Human Dynamics (MANDYN) Social Physics and its Applications (SPA) Complex sciences are expanding their colonies at such a dazzling speed that it - comes literally impossible for any conference to cover all the frontiers.
Author: Thomas Deisboeck
Publisher: Springer Science & Business Media
Published: 2007-06-13
Total Pages: 857
ISBN-13: 0387335323
DOWNLOAD EBOOKComplex Systems Science in Biomedicine Thomas S. Deisboeck and J. Yasha Kresh Complex Systems Science in Biomedicine covers the emerging field of systems science involving the application of physics, mathematics, engineering and computational methods and techniques to the study of biomedicine including nonlinear dynamics at the molecular, cellular, multi-cellular tissue, and organismic level. With all chapters helmed by leading scientists in the field, Complex Systems Science in Biomedicine's goal is to offer its audience a timely compendium of the ongoing research directed to the understanding of biological processes as whole systems instead of as isolated component parts. In Parts I & II, Complex Systems Science in Biomedicine provides a general systems thinking perspective and presents some of the fundamental theoretical underpinnings of this rapidly emerging field. Part III then follows with a multi-scaled approach, spanning from the molecular to macroscopic level, exemplified by studying such diverse areas as molecular networks and developmental processes, the immune and nervous systems, the heart, cancer and multi-organ failure. The volume concludes with Part IV that addresses methods and techniques driven in design and development by this new understanding of biomedical science. Key Topics Include: • Historic Perspectives of General Systems Thinking • Fundamental Methods and Techniques for Studying Complex Dynamical Systems • Applications from Molecular Networks to Disease Processes • Enabling Technologies for Exploration of Systems in the Life Sciences Complex Systems Science in Biomedicine is essential reading for experimental, theoretical, and interdisciplinary scientists working in the biomedical research field interested in a comprehensive overview of this rapidly emerging field. About the Editors: Thomas S. Deisboeck is currently Assistant Professor of Radiology at Massachusetts General Hospital and Harvard Medical School in Boston. An expert in interdisciplinary cancer modeling, Dr. Deisboeck is Director of the Complex Biosystems Modeling Laboratory which is part of the Harvard-MIT Martinos Center for Biomedical Imaging. J. Yasha Kresh is currently Professor of Cardiothoracic Surgery and Research Director, Professor of Medicine and Director of Cardiovascular Biophysics at the Drexel University College of Medicine. An expert in dynamical systems, he holds appointments in the School of Biomedical Engineering and Health Systems, Dept. of Mechanical Engineering and Molecular Pathobiology Program. Prof. Kresh is Fellow of the American College of Cardiology, American Heart Association, Biomedical Engineering Society, American Institute for Medical and Biological Engineering.
Author:
Publisher: Elsevier
Published: 2011-05-23
Total Pages: 951
ISBN-13: 0080931227
DOWNLOAD EBOOKThe domain of nonlinear dynamical systems and its mathematical underpinnings has been developing exponentially for a century, the last 35 years seeing an outpouring of new ideas and applications and a concomitant confluence with ideas of complex systems and their applications from irreversible thermodynamics. A few examples are in meteorology, ecological dynamics, and social and economic dynamics. These new ideas have profound implications for our understanding and practice in domains involving complexity, predictability and determinism, equilibrium, control, planning, individuality, responsibility and so on.Our intention is to draw together in this volume, we believe for the first time, a comprehensive picture of the manifold philosophically interesting impacts of recent developments in understanding nonlinear systems and the unique aspects of their complexity. The book will focus specifically on the philosophical concepts, principles, judgments and problems distinctly raised by work in the domain of complex nonlinear dynamical systems, especially in recent years.-Comprehensive coverage of all main theories in the philosophy of Complex Systems -Clearly written expositions of fundamental ideas and concepts -Definitive discussions by leading researchers in the field -Summaries of leading-edge research in related fields are also included
Author: James Ladyman
Publisher: Yale University Press
Published: 2020-08-05
Total Pages: 182
ISBN-13: 0300251106
DOWNLOAD EBOOKA clear, concise introduction to the quickly growing field of complexity science that explains its conceptual and mathematical foundations What is a complex system? Although "complexity science" is used to understand phenomena as diverse as the behavior of honeybees, the economic markets, the human brain, and the climate, there is no agreement about its foundations. In this introduction for students, academics, and general readers, philosopher of science James Ladyman and physicist Karoline Wiesner develop an account of complexity that brings the different concepts and mathematical measures applied to complex systems into a single framework. They introduce the different features of complex systems, discuss different conceptions of complexity, and develop their own account. They explain why complexity science is so important in today's world.
Author: Ted Carmichael
Publisher: Springer
Published: 2019-06-14
Total Pages: 254
ISBN-13: 3030203093
DOWNLOAD EBOOKThis book emerged out of international conferences organized as part of the AAAI Fall Symposia series, and the Swarmfest 2017 conference. It brings together researchers from diverse fields studying these complex systems using CAS and agent-based modeling tools and techniques. In the past, the knowledge gained in each domain has largely remained exclusive to that domain. By bringing together scholars who study these phenomena, the book takes knowledge from one domain to provide insight into others. Most interesting phenomena in natural and social systems include constant transitions and oscillations among their various phases – wars, companies, societies, markets, and humans rarely stay in a stable, predictable state for long. Randomness, power laws, and human behavior ensure that the future is both unknown and challenging. How do events unfold? When do they take hold? Why do some initial events cause an avalanche while others do not? What characterizes these events? What are the thresholds that differentiate a sea change from a non-event? Complex adaptive systems (CAS) have proven to be a powerful tool for exploring these and other related phenomena. The authors characterize a general CAS model as having a large number of self-similar agents that: 1) utilize one or more levels of feedback; 2) exhibit emergent properties and self-organization; and 3) produce non-linear dynamic behavior. Advances in modeling and computing technology have led not only to a deeper understanding of complex systems in many areas, but they have also raised the possibility that similar fundamental principles may be at work across these systems, even though the underlying principles may manifest themselves differently.
Author: Kristin Glass
Publisher: Springer
Published: 2013-11-08
Total Pages: 350
ISBN-13: 3319034731
DOWNLOAD EBOOKThis book constitutes the thoroughly refereed post-conference proceedings of the Second International ICST Conference on Complex Sciences, COMPLEX 2012, held in Santa Fe, New Mexico, USA in December 2012. The 29 revised full papers presented were carefully reviewed and selected from various submissions. The papers cover aspects on foundations and analysis of complex systems, complex biological systems, complex social systems, complex engineering systems.
Author: David C. Krakauer
Publisher:
Published: 2021-11
Total Pages:
ISBN-13: 9781947864405
DOWNLOAD EBOOKAuthor: Kunihiko Kaneko
Publisher: Springer Science & Business Media
Published: 2011-06-28
Total Pages: 284
ISBN-13: 3642568610
DOWNLOAD EBOOKThis book, the first in a series on this subject, is the outcome of many years of efforts to give a new all-encompassing approach to complex systems in nature based on chaos theory. While maintaining a high level of rigor, the authors avoid an overly complicated mathematical apparatus, making the book accessible to a wider interdisciplinary readership.
Author: Luis M. A. Bettencourt
Publisher: MIT Press
Published: 2021-08-17
Total Pages: 497
ISBN-13: 0262366436
DOWNLOAD EBOOKA novel, integrative approach to cities as complex adaptive systems, applicable to issues ranging from innovation to economic prosperity to settlement patterns. Human beings around the world increasingly live in urban environments. In Introduction to Urban Science, Luis Bettencourt takes a novel, integrative approach to understanding cities as complex adaptive systems, claiming that they require us to frame the field of urban science in a way that goes beyond existing theory in such traditional disciplines as sociology, geography, and economics. He explores the processes facilitated by and, in many cases, unleashed for the first time by urban life through the lenses of social heterogeneity, complex networks, scaling, circular causality, and information. Though the idea that cities are complex adaptive systems has become mainstream, until now those who study cities have lacked a comprehensive theoretical framework for understanding cities and urbanization, for generating useful and falsifiable predictions, and for constructing a solid body of empirical evidence so that the discipline of urban science can continue to develop. Bettencourt applies his framework to such issues as innovation and development across scales, human reasoning and strategic decision-making, patterns of settlement and mobility and their influence on socioeconomic life and resource use, inequality and inequity, biodiversity, and the challenges of sustainable development in both high- and low-income nations. It is crucial, says Bettencourt, to realize that cities are not "zero-sum games" and that knowledge, human cooperation, and collective action can build a better future.