In this research article, we introduce the notion of complex neutrosophic graphs (cn-graphs, for short) and discuss some basic operations related to cn-graphs
Fuzzy graph theory plays an important role in the study of the symmetry and asymmetry properties of fuzzy graphs. With this in mind, in this paper, we introduce new neutrosophic graphs called complex neutrosophic graphs of type 1 (abbr. CNG1). We then present a matrix representation for it and study some properties of this new concept. The concept of CNG1 is an extension of the generalized fuzzy graphs of type 1 (GFG1) and generalized single-valued neutrosophic graphs of type 1 (GSVNG1). The utility of the CNG1 introduced here are applied to a multi-attribute decision making problem related to Internet server selection.
In this paper, we introduced a new neutrosophic graphs called bipolar complex neutrosophic graphs of type1 (BCNG1) and presented a matrix representation for it and studied some properties of this new concept.
The neutrosophic set theory, proposed by smarandache, can be used as a general mathematical tool for dealing with indeterminate and inconsistent information. By applying the concept of neutrosophic sets on graph theory, several studies of neutrosophic models have been presented in the literature.
In this book the authors define, describe, and develop the notion of complex valued graphs, complex neutrosophic valued graphs, and mod complex valued graphs in a systematic way. However complex neural networks have been analyzed and studied as early as 2003. This book gives several applications of them in medical diagnosis, soft computing, and so on.
Studies to neutrosophic graphs happens to be not only innovative and interesting, but gives a new dimension to graph theory. The classic coloring of edge problem happens to give various results. Neutrosophic tree will certainly find lots of applications in data mining when certain levels of indeterminacy is involved in the problem. Several open problems are suggested.
A complex neutrosophic set is a useful model to handle indeterminate situations with a periodic nature. This is characterized by truth, indeterminacy, and falsity degrees which are the combination of real-valued amplitude terms and complex-valued phase terms. Hypergraphs are objects that enable us to dig out invisible connections between the underlying structures of complex systems such as those leading to sustainable development. In this paper, we apply the most fruitful concept of complex neutrosophic sets to theory of hypergraphs. We define complex neutrosophic hypergraphs and discuss their certain properties including lower truncation, upper truncation, and transition levels. Furthermore, we define T-related complex neutrosophic hypergraphs and properties of minimal transversals of complex neutrosophic hypergraphs. Finally, we represent the modeling of certain social networks with intersecting communities through the score functions andchoice values of complex neutrosophic hypergraphs. We also give a brief comparison of our proposed model with other existing models.
Neutrosophic theory and applications have been expanding in all directions at an astonishing rate especially after the introduction the journal entitled “Neutrosophic Sets and Systems”. New theories, techniques, algorithms have been rapidly developed. One of the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc.
Fuzzy graph theory plays an important role in the study of the symmetry and asymmetry properties of fuzzy graphs. With this in mind, in this paper, we introduce new neutrosophic graph called complex neutrosophic graphs of type 1 (abbr. CNG1). We then present a matrix representation for it and study some properties of this new concept.
This book offers a comprehensive guide to the use of neutrosophic sets in multiple criteria decision making problems. It shows how neutrosophic sets, which have been developed as an extension of fuzzy and paraconsistent logic, can help in dealing with certain types of uncertainty that classical methods could not cope with. The chapters, written by well-known researchers, report on cutting-edge methodologies they have been developing and testing on a variety of engineering problems. The book is unique in its kind as it reports for the first time and in a comprehensive manner on the joint use of neutrosophic sets together with existing decision making methods to solve multi-criteria decision-making problems, as well as other engineering problems that are complex, hard to model and/or include incomplete and vague data. By providing new ideas, suggestions and directions for the solution of complex problems in engineering and decision making, it represents an excellent guide for researchers, lecturers and postgraduate students pursuing research on neutrosophic decision making, and more in general in the area of industrial and management engineering.