Complex Multiplication and Lifting Problems

Complex Multiplication and Lifting Problems

Author: Ching-Li Chai

Publisher: American Mathematical Soc.

Published: 2013-12-19

Total Pages: 402

ISBN-13: 1470410141

DOWNLOAD EBOOK

Abelian varieties with complex multiplication lie at the origins of class field theory, and they play a central role in the contemporary theory of Shimura varieties. They are special in characteristic 0 and ubiquitous over finite fields. This book explores the relationship between such abelian varieties over finite fields and over arithmetically interesting fields of characteristic 0 via the study of several natural CM lifting problems which had previously been solved only in special cases. In addition to giving complete solutions to such questions, the authors provide numerous examples to illustrate the general theory and present a detailed treatment of many fundamental results and concepts in the arithmetic of abelian varieties, such as the Main Theorem of Complex Multiplication and its generalizations, the finer aspects of Tate's work on abelian varieties over finite fields, and deformation theory. This book provides an ideal illustration of how modern techniques in arithmetic geometry (such as descent theory, crystalline methods, and group schemes) can be fruitfully combined with class field theory to answer concrete questions about abelian varieties. It will be a useful reference for researchers and advanced graduate students at the interface of number theory and algebraic geometry.


Women in Numbers Europe

Women in Numbers Europe

Author: Marie José Bertin

Publisher: Springer

Published: 2015-09-22

Total Pages: 215

ISBN-13: 331917987X

DOWNLOAD EBOOK

Covering topics in graph theory, L-functions, p-adic geometry, Galois representations, elliptic fibrations, genus 3 curves and bad reduction, harmonic analysis, symplectic groups and mould combinatorics, this volume presents a collection of papers covering a wide swath of number theory emerging from the third iteration of the international Women in Numbers conference, “Women in Numbers - Europe” (WINE), held on October 14–18, 2013 at the CIRM-Luminy mathematical conference center in France. While containing contributions covering a wide range of cutting-edge topics in number theory, the volume emphasizes those concrete approaches that make it possible for graduate students and postdocs to begin work immediately on research problems even in highly complex subjects.


Arithmetic and Geometry

Arithmetic and Geometry

Author: Gisbert Wüstholz

Publisher: Princeton University Press

Published: 2019-10-08

Total Pages: 187

ISBN-13: 0691197547

DOWNLOAD EBOOK

Arithmetic and Geometry presents highlights of recent work in arithmetic algebraic geometry by some of the world's leading mathematicians. Together, these 2016 lectures—which were delivered in celebration of the tenth anniversary of the annual summer workshops in Alpbach, Austria—provide an introduction to high-level research on three topics: Shimura varieties, hyperelliptic continued fractions and generalized Jacobians, and Faltings height and L-functions. The book consists of notes, written by young researchers, on three sets of lectures or minicourses given at Alpbach. The first course, taught by Peter Scholze, contains his recent results dealing with the local Langlands conjecture. The fundamental question is whether for a given datum there exists a so-called local Shimura variety. In some cases, they exist in the category of rigid analytic spaces; in others, one has to use Scholze's perfectoid spaces. The second course, taught by Umberto Zannier, addresses the famous Pell equation—not in the classical setting but rather with the so-called polynomial Pell equation, where the integers are replaced by polynomials in one variable with complex coefficients, which leads to the study of hyperelliptic continued fractions and generalized Jacobians. The third course, taught by Shou-Wu Zhang, originates in the Chowla–Selberg formula, which was taken up by Gross and Zagier to relate values of the L-function for elliptic curves with the height of Heegner points on the curves. Zhang, X. Yuan, and Wei Zhang prove the Gross–Zagier formula on Shimura curves and verify the Colmez conjecture on average.


Variations on a Theorem of Tate

Variations on a Theorem of Tate

Author: Stefan Patrikis

Publisher: American Mathematical Soc.

Published: 2019-04-10

Total Pages: 170

ISBN-13: 1470435403

DOWNLOAD EBOOK

Let F be a number field. These notes explore Galois-theoretic, automorphic, and motivic analogues and refinements of Tate's basic result that continuous projective representations Gal(F¯¯¯¯/F)→PGLn(C) lift to GLn(C). The author takes special interest in the interaction of this result with algebraicity (for automorphic representations) and geometricity (in the sense of Fontaine-Mazur). On the motivic side, the author studies refinements and generalizations of the classical Kuga-Satake construction. Some auxiliary results touch on: possible infinity-types of algebraic automorphic representations; comparison of the automorphic and Galois “Tannakian formalisms” monodromy (independence-of-ℓ) questions for abstract Galois representations.


Geometry of Isotropic Convex Bodies

Geometry of Isotropic Convex Bodies

Author: Silouanos Brazitikos

Publisher: American Mathematical Soc.

Published: 2014-04-24

Total Pages: 618

ISBN-13: 1470414562

DOWNLOAD EBOOK

The study of high-dimensional convex bodies from a geometric and analytic point of view, with an emphasis on the dependence of various parameters on the dimension stands at the intersection of classical convex geometry and the local theory of Banach spaces. It is also closely linked to many other fields, such as probability theory, partial differential equations, Riemannian geometry, harmonic analysis and combinatorics. It is now understood that the convexity assumption forces most of the volume of a high-dimensional convex body to be concentrated in some canonical way and the main question is whether, under some natural normalization, the answer to many fundamental questions should be independent of the dimension. The aim of this book is to introduce a number of well-known questions regarding the distribution of volume in high-dimensional convex bodies, which are exactly of this nature: among them are the slicing problem, the thin shell conjecture and the Kannan-Lovász-Simonovits conjecture. This book provides a self-contained and up to date account of the progress that has been made in the last fifteen years.


The Octagonal PETs

The Octagonal PETs

Author: Richard Evan Schwartz

Publisher: American Mathematical Soc.

Published: 2014-07-03

Total Pages: 226

ISBN-13: 1470415224

DOWNLOAD EBOOK

A polytope exchange transformation is a (discontinuous) map from a polytope to itself that is a translation wherever it is defined. The 1-dimensional examples, interval exchange transformations, have been studied fruitfully for many years and have deep connections to other areas of mathematics, such as Teichmüller theory. This book introduces a general method for constructing polytope exchange transformations in higher dimensions and then studies the simplest example of the construction in detail. The simplest case is a 1-parameter family of polygon exchange transformations that turns out to be closely related to outer billiards on semi-regular octagons. The 1-parameter family admits a complete renormalization scheme, and this structure allows for a fairly complete analysis both of the system and of outer billiards on semi-regular octagons. The material in this book was discovered through computer experimentation. On the other hand, the proofs are traditional, except for a few rigorous computer-assisted calculations.


Arakelov Geometry and Diophantine Applications

Arakelov Geometry and Diophantine Applications

Author: Emmanuel Peyre

Publisher: Springer Nature

Published: 2021-03-10

Total Pages: 469

ISBN-13: 3030575594

DOWNLOAD EBOOK

Bridging the gap between novice and expert, the aim of this book is to present in a self-contained way a number of striking examples of current diophantine problems to which Arakelov geometry has been or may be applied. Arakelov geometry can be seen as a link between algebraic geometry and diophantine geometry. Based on lectures from a summer school for graduate students, this volume consists of 12 different chapters, each written by a different author. The first chapters provide some background and introduction to the subject. These are followed by a presentation of different applications to arithmetic geometry. The final part describes the recent application of Arakelov geometry to Shimura varieties and the proof of an averaged version of Colmez's conjecture. This book thus blends initiation to fundamental tools of Arakelov geometry with original material corresponding to current research. This book will be particularly useful for graduate students and researchers interested in the connections between algebraic geometry and number theory. The prerequisites are some knowledge of number theory and algebraic geometry.


Geometry, Algebra, Number Theory, and Their Information Technology Applications

Geometry, Algebra, Number Theory, and Their Information Technology Applications

Author: Amir Akbary

Publisher: Springer

Published: 2018-09-18

Total Pages: 523

ISBN-13: 3319973797

DOWNLOAD EBOOK

This volume contains proceedings of two conferences held in Toronto (Canada) and Kozhikode (India) in 2016 in honor of the 60th birthday of Professor Kumar Murty. The meetings were focused on several aspects of number theory: The theory of automorphic forms and their associated L-functions Arithmetic geometry, with special emphasis on algebraic cycles, Shimura varieties, and explicit methods in the theory of abelian varieties The emerging applications of number theory in information technology Kumar Murty has been a substantial influence in these topics, and the two conferences were aimed at honoring his many contributions to number theory, arithmetic geometry, and information technology.


Topological Modular Forms

Topological Modular Forms

Author: Christopher L. Douglas

Publisher: American Mathematical Soc.

Published: 2014-12-04

Total Pages: 353

ISBN-13: 1470418843

DOWNLOAD EBOOK

The theory of topological modular forms is an intricate blend of classical algebraic modular forms and stable homotopy groups of spheres. The construction of this theory combines an algebro-geometric perspective on elliptic curves over finite fields with techniques from algebraic topology, particularly stable homotopy theory. It has applications to and connections with manifold topology, number theory, and string theory. This book provides a careful, accessible introduction to topological modular forms. After a brief history and an extended overview of the subject, the book proper commences with an exposition of classical aspects of elliptic cohomology, including background material on elliptic curves and modular forms, a description of the moduli stack of elliptic curves, an explanation of the exact functor theorem for constructing cohomology theories, and an exploration of sheaves in stable homotopy theory. There follows a treatment of more specialized topics, including localization of spectra, the deformation theory of formal groups, and Goerss-Hopkins obstruction theory for multiplicative structures on spectra. The book then proceeds to more advanced material, including discussions of the string orientation, the sheaf of spectra on the moduli stack of elliptic curves, the homotopy of topological modular forms, and an extensive account of the construction of the spectrum of topological modular forms. The book concludes with the three original, pioneering and enormously influential manuscripts on the subject, by Hopkins, Miller, and Mahowald.


Persistence Theory: From Quiver Representations to Data Analysis

Persistence Theory: From Quiver Representations to Data Analysis

Author: Steve Y. Oudot

Publisher: American Mathematical Soc.

Published: 2017-05-17

Total Pages: 229

ISBN-13: 1470434431

DOWNLOAD EBOOK

Persistence theory emerged in the early 2000s as a new theory in the area of applied and computational topology. This book provides a broad and modern view of the subject, including its algebraic, topological, and algorithmic aspects. It also elaborates on applications in data analysis. The level of detail of the exposition has been set so as to keep a survey style, while providing sufficient insights into the proofs so the reader can understand the mechanisms at work. The book is organized into three parts. The first part is dedicated to the foundations of persistence and emphasizes its connection to quiver representation theory. The second part focuses on its connection to applications through a few selected topics. The third part provides perspectives for both the theory and its applications. The book can be used as a text for a course on applied topology or data analysis.