Complex Multiplication

Complex Multiplication

Author: S. Lang

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 191

ISBN-13: 146125485X

DOWNLOAD EBOOK

The small book by Shimura-Taniyama on the subject of complex multi is a classic. It gives the results obtained by them (and some by Weil) plication in the higher dimensional case, generalizing in a non-trivial way the method of Deuring for elliptic curves, by reduction mod p. Partly through the work of Shimura himself (cf. [Sh 1] [Sh 2], and [Sh 5]), and some others (Serre, Tate, Kubota, Ribet, Deligne etc.) it is possible today to make a more snappy and extensive presentation of the fundamental results than was possible in 1961. Several persons have found my lecture notes on this subject useful to them, and so I have decided to publish this short book to make them more widely available. Readers acquainted with the standard theory of abelian varieties, and who wish to get rapidly an idea of the fundamental facts of complex multi plication, are advised to look first at the two main theorems, Chapter 3, §6 and Chapter 4, §1, as well as the rest of Chapter 4. The applications of Chapter 6 could also be profitably read early. I am much indebted to N. Schappacher for a careful reading of the manu script resulting in a number of useful suggestions. S. LANG Contents CHAPTER 1 Analytic Complex Multiplication 4 I. Positive Definite Involutions . . . 6 2. CM Types and Subfields. . . . . 8 3. Application to Abelian Manifolds. 4. Construction of Abelian Manifolds with CM 14 21 5. Reflex of a CM Type . . . . .


Complex Multiplication

Complex Multiplication

Author: Reinhard Schertz

Publisher: Cambridge University Press

Published: 2010-04-29

Total Pages:

ISBN-13: 1139486837

DOWNLOAD EBOOK

This is a self-contained 2010 account of the state of the art in classical complex multiplication that includes recent results on rings of integers and applications to cryptography using elliptic curves. The author is exhaustive in his treatment, giving a thorough development of the theory of elliptic functions, modular functions and quadratic number fields and providing a concise summary of the results from class field theory. The main results are accompanied by numerical examples, equipping any reader with all the tools and formulas they need. Topics covered include: the construction of class fields over quadratic imaginary number fields by singular values of the modular invariant j and Weber's tau-function; explicit construction of rings of integers in ray class fields and Galois module structure; the construction of cryptographically relevant elliptic curves over finite fields; proof of Berwick's congruences using division values of the Weierstrass p-function; relations between elliptic units and class numbers.


Abelian Varieties with Complex Multiplication and Modular Functions

Abelian Varieties with Complex Multiplication and Modular Functions

Author: Goro Shimura

Publisher: Princeton University Press

Published: 2016-06-02

Total Pages: 232

ISBN-13: 1400883946

DOWNLOAD EBOOK

Reciprocity laws of various kinds play a central role in number theory. In the easiest case, one obtains a transparent formulation by means of roots of unity, which are special values of exponential functions. A similar theory can be developed for special values of elliptic or elliptic modular functions, and is called complex multiplication of such functions. In 1900 Hilbert proposed the generalization of these as the twelfth of his famous problems. In this book, Goro Shimura provides the most comprehensive generalizations of this type by stating several reciprocity laws in terms of abelian varieties, theta functions, and modular functions of several variables, including Siegel modular functions. This subject is closely connected with the zeta function of an abelian variety, which is also covered as a main theme in the book. The third topic explored by Shimura is the various algebraic relations among the periods of abelian integrals. The investigation of such algebraicity is relatively new, but has attracted the interest of increasingly many researchers. Many of the topics discussed in this book have not been covered before. In particular, this is the first book in which the topics of various algebraic relations among the periods of abelian integrals, as well as the special values of theta and Siegel modular functions, are treated extensively.


Handbook of Complex Variables

Handbook of Complex Variables

Author: Steven G. Krantz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 301

ISBN-13: 1461215889

DOWNLOAD EBOOK

This book is written to be a convenient reference for the working scientist, student, or engineer who needs to know and use basic concepts in complex analysis. It is not a book of mathematical theory. It is instead a book of mathematical practice. All the basic ideas of complex analysis, as well as many typical applica tions, are treated. Since we are not developing theory and proofs, we have not been obliged to conform to a strict logical ordering of topics. Instead, topics have been organized for ease of reference, so that cognate topics appear in one place. Required background for reading the text is minimal: a good ground ing in (real variable) calculus will suffice. However, the reader who gets maximum utility from the book will be that reader who has had a course in complex analysis at some time in his life. This book is a handy com pendium of all basic facts about complex variable theory. But it is not a textbook, and a person would be hard put to endeavor to learn the subject by reading this book.


Advanced Topics in the Arithmetic of Elliptic Curves

Advanced Topics in the Arithmetic of Elliptic Curves

Author: Joseph H. Silverman

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 482

ISBN-13: 1461208513

DOWNLOAD EBOOK

In the introduction to the first volume of The Arithmetic of Elliptic Curves (Springer-Verlag, 1986), I observed that "the theory of elliptic curves is rich, varied, and amazingly vast," and as a consequence, "many important topics had to be omitted." I included a brief introduction to ten additional topics as an appendix to the first volume, with the tacit understanding that eventually there might be a second volume containing the details. You are now holding that second volume. it turned out that even those ten topics would not fit Unfortunately, into a single book, so I was forced to make some choices. The following material is covered in this book: I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. Neron models, Kodaira-Neron classification of special fibers, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. Neron's theory of canonical local height functions.


Primes of the Form X2 + Ny2

Primes of the Form X2 + Ny2

Author: David A. Cox

Publisher: Wiley-Interscience

Published: 1989-09-28

Total Pages: 380

ISBN-13:

DOWNLOAD EBOOK

Modern number theory began with the work of Euler and Gauss to understand and extend the many unsolved questions left behind by Fermat. In the course of their investigations, they uncovered new phenomena in need of explanation, which over time led to the discovery of field theory and its intimate connection with complex multiplication. While most texts concentrate on only the elementary or advanced aspects of this story, Primes of the Form x2 + ny2 begins with Fermat and explains how his work ultimately gave birth to quadratic reciprocity and the genus theory of quadratic forms. Further, the book shows how the results of Euler and Gauss can be fully understood only in the context of class field theory. Finally, in order to bring class field theory down to earth, the book explores some of the magnificent formulas of complex multiplication. The central theme of the book is the story of which primes p can be expressed in the form x2 + ny2. An incomplete answer is given using quadratic forms. A better though abstract answer comes from class field theory, and finally, a concrete answer is provided by complex multiplication. Along the way, the reader is introduced to some wonderful number theory. Numerous exercises and examples are included. The book is written to be enjoyed by readers with modest mathematical backgrounds. Chapter 1 uses basic number theory and abstract algebra, while chapters 2 and 3 require Galois theory and complex analysis, respectively.


Algebraic Geometry and Its Applications

Algebraic Geometry and Its Applications

Author: Jean Chaumine

Publisher: World Scientific

Published: 2008

Total Pages: 530

ISBN-13: 9812793437

DOWNLOAD EBOOK

This volume covers many topics, including number theory, Boolean functions, combinatorial geometry, and algorithms over finite fields. It contains many new, theoretical and applicable results, as well as surveys that were presented by the top specialists in these areas. New results include an answer to one of Serre''s questions, posted in a letter to Top; cryptographic applications of the discrete logarithm problem related to elliptic curves and hyperelliptic curves; construction of function field towers; construction of new classes of Boolean cryptographic functions; and algorithmic applications of algebraic geometry. Sample Chapter(s). Chapter 1: Fast addition on non-hyperelliptic genus 3 curves (424 KB). Contents: Symmetric Cryptography and Algebraic Curves (F Voloch); Galois Invariant Smoothness Basis (J-M Couveignes & R Lercier); Fuzzy Pairing-Based CL-PKC (M Kiviharju); On the Semiprimitivity of Cyclic Codes (Y Aubry & P Langevin); Decoding of Scroll Codes (G H Hitching & T Johnsen); An Optimal Unramified Tower of Function Fields (K Brander); On the Number of Resilient Boolean Functions (S Mesnager); On Quadratic Extensions of Cyclic Projective Planes (H F Law & P P W Wong); Partitions of Vector Spaces over Finite Fields (Y Zelenyuk); and other papers. Readership: Mathematicians, researchers in mathematics (academic and industry R&D).


Visual Complex Analysis

Visual Complex Analysis

Author: Tristan Needham

Publisher: Oxford University Press

Published: 1997

Total Pages: 620

ISBN-13: 9780198534464

DOWNLOAD EBOOK

This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.


Complex Multiplication and Lifting Problems

Complex Multiplication and Lifting Problems

Author: Ching-Li Chai

Publisher: American Mathematical Soc.

Published: 2013-12-19

Total Pages: 402

ISBN-13: 1470410141

DOWNLOAD EBOOK

Abelian varieties with complex multiplication lie at the origins of class field theory, and they play a central role in the contemporary theory of Shimura varieties. They are special in characteristic 0 and ubiquitous over finite fields. This book explores the relationship between such abelian varieties over finite fields and over arithmetically interesting fields of characteristic 0 via the study of several natural CM lifting problems which had previously been solved only in special cases. In addition to giving complete solutions to such questions, the authors provide numerous examples to illustrate the general theory and present a detailed treatment of many fundamental results and concepts in the arithmetic of abelian varieties, such as the Main Theorem of Complex Multiplication and its generalizations, the finer aspects of Tate's work on abelian varieties over finite fields, and deformation theory. This book provides an ideal illustration of how modern techniques in arithmetic geometry (such as descent theory, crystalline methods, and group schemes) can be fruitfully combined with class field theory to answer concrete questions about abelian varieties. It will be a useful reference for researchers and advanced graduate students at the interface of number theory and algebraic geometry.


Kronecker's Jugendtraum and Modular Functions

Kronecker's Jugendtraum and Modular Functions

Author: Serge G. Vlăduț

Publisher: CRC Press

Published: 1991

Total Pages: 426

ISBN-13: 9782881247545

DOWNLOAD EBOOK

During the second half of the 19th century, Leopold Kronecker cherished a dream, his Jugendtraum, that he should see the formulation of a complete theory of complex multiplication. Kronecker's papers devoted to his Jugendtraum constitute the foundations of the arithmetical theory of modular functions. Vladut has studied the dream, and traces the development of elliptic function theory from its genesis to its most recent achievements. Included is a reprint of Kronecker's 1886 paper which presents many of the principal ideas of the arithmetical theory of modular functions. Translated from the Russian. Annotation copyrighted by Book News, Inc., Portland, OR