A plethora of different theories, models, and concepts make up the field of community ecology. Amid this vast body of work, is it possible to build one general theory of ecological communities? What other scientific areas might serve as a guiding framework? As it turns out, the core focus of community ecology—understanding patterns of diversity and composition of biological variants across space and time—is shared by evolutionary biology and its very coherent conceptual framework, population genetics theory. The Theory of Ecological Communities takes this as a starting point to pull together community ecology's various perspectives into a more unified whole. Mark Vellend builds a theory of ecological communities based on four overarching processes: selection among species, drift, dispersal, and speciation. These are analogues of the four central processes in population genetics theory—selection within species, drift, gene flow, and mutation—and together they subsume almost all of the many dozens of more specific models built to describe the dynamics of communities of interacting species. The result is a theory that allows the effects of many low-level processes, such as competition, facilitation, predation, disturbance, stress, succession, colonization, and local extinction to be understood as the underpinnings of high-level processes with widely applicable consequences for ecological communities. Reframing the numerous existing ideas in community ecology, The Theory of Ecological Communities provides a new way for thinking about biological composition and diversity.
As one of the most quantitative of ecological subdisciplines, resource competition is an important, central area of ecology. Recently research into this area has increased dramatically and resource competition models have become more complex. The characterisation of this phenomenon is therefore the aim of this book. Resource Competition seeks to identify the unifying principles emerging from experimental and theoretical approaches as well as the differences between organisms, illustrating that greater knowledge of resource competition will benefit human and environmental welfare. This book will serve as an indispensable guide to ecologists, evolutionary biologists and environmental managers, and all those interested in resource competition as an emerging discipline.
The question "Why are there so many species?" has puzzled ecologist for a long time. Initially, an academic question, it has gained practical interest by the recent awareness of global biodiversity loss. Species diversity in local ecosystems has always been discussed in relation to the problem of competi tive exclusion and the apparent contradiction between the competitive exclu sion principle and the overwhelming richness of species found in nature. Competition as a mechanism structuring ecological communities has never been uncontroversial. Not only its importance but even its existence have been debated. On the one extreme, some ecologists have taken competi tion for granted and have used it as an explanation by default if the distribu tion of a species was more restricted than could be explained by physiology and dispersal history. For decades, competition has been a core mechanism behind popular concepts like ecological niche, succession, limiting similarity, and character displacement, among others. For some, competition has almost become synonymous with the Darwinian "struggle for existence", although simple plausibility should tell us that organisms have to struggle against much more than competitors, e.g. predators, parasites, pathogens, and envi ronmental harshness.
Competition between species arises when two or more species share at least some of the same limited resources. It is likely to affect all species, as well as many higher-level aspects of community and ecosystem dynamics. Interspecific competition shares many of the same features as density dependence (intraspecific competition) and evolution (competition between genotypes). In spite of this, a robust theoretical framework is not yet in place to develop a more coherent understanding of this important interaction. Despite its prominence in the ecological literature, the theory seems to have lost direction in recent decades, with many synthetic papers promoting outdated ideas, failing to use resource-based models, and having little utility in applied fields such as conservation and environmental management. Competition theory has done little to incorporate new findings regarding consumer-resource interactions in the context of larger food webs containing behaviourally or evolutionarily adapting components. Overly simple models and methods of analysis continue to be influential. Competition Theory in Ecology represents a timely opportunity to address these shortcomings and suggests a more useful approach to modelling that can provide a basis for future models that have greater predictive ability in both ecology and evolution. The book concludes with some broader observations on the lack of agreement on general principles to use in constructing mathematical models to help understand ecological systems. It argues that a more open discussion and debate of the underlying structure of ecological theory is now urgently required to move the field forward.
"A bold and successful attempt to illustrate the theoretical foundations of all of the subdisciplines of ecology, including basic and applied, and extending through biophysical, population, community, and ecosystem ecology. Encyclopedia of Theoretical Ecology is a compendium of clear and concise essays by the intellectual leaders across this vast breadth of knowledge."--Harold Mooney, Stanford University "A remarkable and indispensable reference work that also is flexible enough to provide essential readings for a wide variety of courses. A masterful collection of authoritative papers that convey the rich and fundamental nature of modern theoretical ecology."--Simon A. Levin, Princeton University "Theoretical ecologists exercise their imaginations to make sense of the astounding complexity of both real and possible ecosystems. Imagining a real or possible topic left out of the Encyclopedia of Theoretical Ecology has proven just as challenging. This comprehensive compendium demonstrates that theoretical ecology has become a mature science, and the volume will serve as the foundation for future creativity in this area."--Fred Adler, University of Utah "The editors have assembled an outstanding group of contributors who are a great match for their topics. Sometimes the author is a key, authoritative figure in a field; and at other times, the author has enough distance to convey all sides of a subject. The next time you need to introduce ecology students to a theoretical topic, you'll be glad to have this encyclopedia on your bookshelf."--Stephen Ellner, Cornell University “Everything you wanted to know about theoretical ecology, and much that you didn’t know you needed to know but will now! Alan Hastings and Louis Gross have done us a great service by bringing together in very accessible form a huge amount of information about a broad, complicated, and expanding field.”--Daniel Simberloff, University of Tennessee, Knoxville
It is not often that one has the opportunity to send a public birthday greet ing to a friend and colleague of many years, and to congratulate him on having reached the age of reason. In fact it happens only once, and comes then as a surprise. Surely it was only a few years ago that we sat together at an International Genetics Congress in Ithaca, and only yesterday that we became members of the same department. The eighth floor of Schermerhorn Hall had a north end where the flies were and a south end furnished with mice, and in between, a seminar room and laboratory. There the distances were short and the doors open and the coffee pot busy. But it now appears that yesterday has fallen thirty years behind and that we have grown up. I find it interesting and appropriate that Dobzhansky's lifetime spans the period of maturation of the fields to which this volume is devoted. This is true in a chronological sense for his birth occurred in the same year, 1900, in which modern genetics began. The rediscovery of Mendel's princi ples and the interpretation of the nature of heredity and variation to which this event led were necessary prerequisites to the development of evolution ary biology as presented in this collection of essays.
One of the central questions of ecology is why there are so many different kinds of plants and animals. Here David Tilman presents a theory of how organisms compete for resources and the way their competition promotes diversity. Developing Hutchinson's suggestion that the main cause of diversity is the feeding relations of species, this book builds a mechanistic, resource-based explanation of the structure and functioning of ecological communities. In a detailed analysis of the Park Grass Experiments at the Rothamsted Experimental Station in England, the author demonstrates that the dramatic results of these 120 years of experimentation are consistent with his theory, as are observations in many other natural communities. The consumer-resource approach of this book is applicable to both animal and plant communities, but the majority of Professor Tilman's discussion concentrates on the structure of plant communities. All theoretical arguments are developed graphically, and formal mathematics is kept to a minimum. The final chapters of the book provide some testable speculations about resources and animal communities and explore such problems as the evolution of "super species," the differences between plant and animal community diversity patterns, and the cause of plant succession.
This work is the first to focus systematically on a much-debated topic: the conceptual issues of community ecology, including the nature of evidence in ecology, the role of experiments, attempts to disprove hypotheses, and the value of negative evidence in the discipline. Originally published in 1984. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.