This book offers a collection of high-quality peer-reviewed research papers presented at the Second International Conference on Communication and Computational Technologies (ICCCT 2019), held at Rajasthan Institute of Engineering and Technology, Jaipur, Rajasthan, India, on 30–31 August 2019. In contributions prepared by researchers from academia and industry alike, the book discusses a wide variety of industrial, engineering and scientific applications of emerging techniques.
Do you need to know what technique to use to evaluate the reliability of an engineered system? This self-contained guide provides comprehensive coverage of all the analytical and modeling techniques currently in use, from classical non-state and state space approaches, to newer and more advanced methods such as binary decision diagrams, dynamic fault trees, Bayesian belief networks, stochastic Petri nets, non-homogeneous Markov chains, semi-Markov processes, and phase type expansions. Readers will quickly understand the relative pros and cons of each technique, as well as how to combine different models together to address complex, real-world modeling scenarios. Numerous examples, case studies and problems provided throughout help readers put knowledge into practice, and a solutions manual and Powerpoint slides for instructors accompany the book online. This is the ideal self-study guide for students, researchers and practitioners in engineering and computer science.
This textbook provides a quick and easy understanding of multistage interconnection networks (MINs) for engineers. The book contents focus on the design, performance metrics, and evaluation of these networks which are crucial in modern computer architecture. The contents equip engineering students, apprentices and professionals with in-depth knowledge and analysis of MINS, enabling them to build complex computer architectures for efficient data communications and cost effective solutions for circuit design. The book starts with an introduction to MINS and subsequently progresses to the evaluation of a range of MINS (SEN, Gamma-Minus, FTSN, FTGN, SEGIN). Key highlights of the book include: · Easy to understand notes on design, reliability and fault tolerance · Covers a wide range of MIN types with notes on design variants · Supplementary information aiding comprehension of the main content. · A curated list of references for further exploration and deeper understanding.
Reliability Assessment and Optimization of Complex Systems delves into a range of tools and techniques for designing optimized complex systems. Each chapter explores system modeling and the implementation of various metaheuristics for optimization purposes. This book provides readers in the domain of applied mathematics with a comprehensive understanding of system reliability analysis and improvement, thereby offering substantial value to their knowledge and expertise. System reliability has become the paramount attribute of any production unit. The process of maximizing system reliability while adhering to multiple constraints is referred to as reliability optimization.There are two primary approaches to enhancing a system's performance and reliability: developing a product with reduced failures (failure avoidance) or incorporating resilience to ensure the system continues functioning even in the event of a failure (fault tolerance). - Explains the process and application of reliability-based design optimization - Covers many metaheuristic approaches such as reliability, cost, and the MTTF of the system - Provides the workings and applications of multi-objective optimizations
The 1987 Princeton Workshop on Algorithm, Architecture and Technology Issues for Models of Concurrent Computation was organized as an interdisciplinary work shop emphasizing current research directions toward concurrent computing systems. With participants from several different fields of specialization, the workshop cov ered a wide variety of topics, though by no means a complete cross section of issues in this rapidly moving field. The papers included in this book were prepared for the workshop and, taken together, provide a view of the broad range of issues and alternative directions being explored. To organize the various papers, the book has been divided into five parts. Part I considers new technology directions. Part II emphasizes underlying theoretical issues. Communication issues, which are ad dressed in the majority of papers, are specifically highlighted in Part III. Part IV includes papers stressing the fault tolerance and reliability of systems. Finally, Part V includes systems-oriented papers, where the system ranges from VLSI circuits through powerful parallel computers. Much of the initial planning of the workshop was completed through an informal AT&T Bell Laboratories group consisting of Mehdi Hatamian, Vijay Kumar, Adri aan Ligtenberg, Sailesh Rao, P. Subrahmanyam and myself. We are grateful to Stuart Schwartz, both for the support of Princeton University and for his orga nizing local arrangements for the workshop, and to the members of the organizing committee, whose recommendations for participants and discussion topics were par ticularly helpful. A. Rosenberg, and A. T.
This book presents novel and efficient tools, techniques and approaches for reliability evaluation, reliability analysis, and design of reliable communication networks using graph theoretic concepts. In recent years, human beings have become largely dependent on communication networks, such as computer communication networks, telecommunication networks, mobile switching networks etc., for their day-to-day activities. In today's world, humans and critical machines depend on these communication networks to work properly. Failure of these communication networks can result in situations where people may find themselves isolated, helpless and exposed to hazards. It is a fact that every component or system can fail and its failure probability increases with size and complexity. The main objective of this book is to devize approaches for reliability modeling and evaluation of such complex networks. Such evaluation helps to understand which network can give us better reliability by their design. New designs of fault-tolerant interconnection network layouts are proposed, which are capable of providing high reliability through path redundancy and fault tolerance through reduction of common elements in paths. This book covers the reliability evaluation of various network topologies considering multiple reliability performance parameters (two terminal reliability, broadcast reliability, all terminal reliability, and multiple sources to multiple destinations reliability).