Compactification of the Drinfeld Modular Surfaces

Compactification of the Drinfeld Modular Surfaces

Author: Thomas Lehmkuhl

Publisher: American Mathematical Soc.

Published: 2009-01-21

Total Pages: 113

ISBN-13: 0821842447

DOWNLOAD EBOOK

In this article the author describes in detail a compactification of the moduli schemes representing Drinfeld modules of rank 2 endowed with some level structure. The boundary is a union of copies of moduli schemes for Drinfeld modules of rank 1, and its points are interpreted as Tate data. The author also studies infinitesimal deformations of Drinfeld modules with level structure.


Drinfeld Modules

Drinfeld Modules

Author: Mihran Papikian

Publisher: Springer Nature

Published: 2023-03-31

Total Pages: 541

ISBN-13: 3031197070

DOWNLOAD EBOOK

This textbook offers an introduction to the theory of Drinfeld modules, mathematical objects that are fundamental to modern number theory. After the first two chapters conveniently recalling prerequisites from abstract algebra and non-Archimedean analysis, Chapter 3 introduces Drinfeld modules and the key notions of isogenies and torsion points. Over the next four chapters, Drinfeld modules are studied in settings of various fields of arithmetic importance, culminating in the case of global fields. Throughout, numerous number-theoretic applications are discussed, and the analogies between classical and function field arithmetic are emphasized. Drinfeld Modules guides readers from the basics to research topics in function field arithmetic, assuming only familiarity with graduate-level abstract algebra as prerequisite. With exercises of varying difficulty included in each section, the book is designed to be used as the primary textbook for a graduate course on the topic, and may also provide a supplementary reference for courses in algebraic number theory, elliptic curves, and related fields. Furthermore, researchers in algebra and number theory will appreciate it as a self-contained reference on the topic.


Arithmetic Geometry over Global Function Fields

Arithmetic Geometry over Global Function Fields

Author: Gebhard Böckle

Publisher: Springer

Published: 2014-11-13

Total Pages: 350

ISBN-13: 3034808534

DOWNLOAD EBOOK

This volume collects the texts of five courses given in the Arithmetic Geometry Research Programme 2009-2010 at the CRM Barcelona. All of them deal with characteristic p global fields; the common theme around which they are centered is the arithmetic of L-functions (and other special functions), investigated in various aspects. Three courses examine some of the most important recent ideas in the positive characteristic theory discovered by Goss (a field in tumultuous development, which is seeing a number of spectacular advances): they cover respectively crystals over function fields (with a number of applications to L-functions of t-motives), gamma and zeta functions in characteristic p, and the binomial theorem. The other two are focused on topics closer to the classical theory of abelian varieties over number fields: they give respectively a thorough introduction to the arithmetic of Jacobians over function fields (including the current status of the BSD conjecture and its geometric analogues, and the construction of Mordell-Weil groups of high rank) and a state of the art survey of Geometric Iwasawa Theory explaining the recent proofs of various versions of the Main Conjecture, in the commutative and non-commutative settings.


Compactifications of Symmetric and Locally Symmetric Spaces

Compactifications of Symmetric and Locally Symmetric Spaces

Author: Armand Borel

Publisher: Springer Science & Business Media

Published: 2006-07-25

Total Pages: 477

ISBN-13: 0817644660

DOWNLOAD EBOOK

Introduces uniform constructions of most of the known compactifications of symmetric and locally symmetric spaces, with emphasis on their geometric and topological structures Relatively self-contained reference aimed at graduate students and research mathematicians interested in the applications of Lie theory and representation theory to analysis, number theory, algebraic geometry and algebraic topology


Number Fields and Function Fields – Two Parallel Worlds

Number Fields and Function Fields – Two Parallel Worlds

Author: Gerard B. M. van der Geer

Publisher: Springer Science & Business Media

Published: 2006-11-24

Total Pages: 323

ISBN-13: 0817644474

DOWNLOAD EBOOK

Invited articles by leading researchers explore various aspects of the parallel worlds of function fields and number fields Topics range from Arakelov geometry, the search for a theory of varieties over the field with one element, via Eisenstein series to Drinfeld modules, and t-motives Aimed at graduate students, mathematicians, and researchers interested in geometry and arithmetic and their connections


Yang-Mills Connections on Orientable and Nonorientable Surfaces

Yang-Mills Connections on Orientable and Nonorientable Surfaces

Author: Nan-Kuo Ho

Publisher: American Mathematical Soc.

Published: 2009-10-08

Total Pages: 113

ISBN-13: 0821844911

DOWNLOAD EBOOK

In ``The Yang-Mills equations over Riemann surfaces'', Atiyah and Bott studied Yang-Mills functional over a Riemann surface from the point of view of Morse theory. In ``Yang-Mills Connections on Nonorientable Surfaces'', the authors study Yang-Mills functional on the space of connections on a principal $G_{\mathbb{R}}$-bundle over a closed, connected, nonorientable surface, where $G_{\mathbb{R}}$ is any compact connected Lie group. In this monograph, the authors generalize the discussion in ``The Yang-Mills equations over Riemann surfaces'' and ``Yang-Mills Connections on Nonorientable Surfaces''. They obtain explicit descriptions of equivariant Morse stratification of Yang-Mills functional on orientable and nonorientable surfaces for non-unitary classical groups $SO(n)$ and $Sp(n)$.


Hypocoercivity

Hypocoercivity

Author: CŽdric Villani

Publisher: American Mathematical Soc.

Published: 2009-10-08

Total Pages: 154

ISBN-13: 0821844989

DOWNLOAD EBOOK

This memoir attempts at a systematic study of convergence to stationary state for certain classes of degenerate diffusive equations, taking the general form ${\frac{\partial f}{\partial t}}+ L f =0$. The question is whether and how one can overcome the degeneracy by exploiting commutators.


Center Manifolds for Semilinear Equations with Non-Dense Domain and Applications to Hopf Bifurcation in Age Structured Models

Center Manifolds for Semilinear Equations with Non-Dense Domain and Applications to Hopf Bifurcation in Age Structured Models

Author: Pierre Magal

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 84

ISBN-13: 0821846531

DOWNLOAD EBOOK

Several types of differential equations, such as delay differential equations, age-structure models in population dynamics, evolution equations with boundary conditions, can be written as semilinear Cauchy problems with an operator which is not densely defined in its domain. The goal of this paper is to develop a center manifold theory for semilinear Cauchy problems with non-dense domain. Using Liapunov-Perron method and following the techniques of Vanderbauwhede et al. in treating infinite dimensional systems, the authors study the existence and smoothness of center manifolds for semilinear Cauchy problems with non-dense domain. As an application, they use the center manifold theorem to establish a Hopf bifurcation theorem for age structured models.