Compact Antennas for Wireless Communications and Terminals deals with compact microwave antennas and, more specifically, with the planar version of these antennas. Planar antennas are the most appropriate type of antenna in modern communication systems and more generally in all applications requiring miniaturization, integration and conformation such as in mobile phone handsets. The book is suitable for students, engineers and scientists eager to understand the principles of planar and small antennas, their design and fabrication issues, and modern aspects such as UWB antennas, reconfigurable antennas and diversity issues.
The move toward worldwide wireless communications continues at a remarkable pace, and the antenna element of the technology is crucial to its success. With contributions from more than 30 international experts, the Handbook of Antennas in Wireless Communications brings together all of the latest research and results to provide engineering professionals and students with a one-stop reference on the theory, technologies, and applications for indoor, hand-held, mobile, and satellite systems. Beginning with an introduction to wireless communications systems, it offers an in-depth treatment of propagation prediction and fading channels. It then explores antenna technology with discussion of antenna design methods and the various antennas in current use or development for base stations, hand held devices, satellite communications, and shaping beams. The discussions then move to smart antennas and phased array technology, including details on array theory and beamforming techniques. Space diversity, direction-of-arrival estimation, source tracking, and blind source separation methods are addressed, as are the implementation of smart antennas and the results of field trials of systems using smart antennas implemented. Finally, the hot media topic of the safety of mobile phones receives due attention, including details of how the human body interacts with the electromagnetic fields of these devices. Its logical development and extensive range of diagrams, figures, and photographs make this handbook easy to follow and provide a clear understanding of design techniques and the performance of finished products. Its unique, comprehensive coverage written by top experts in their fields promises to make the Handbook of Antennas in Wireless Communications the standard reference for the field.
This book discusses antenna designs for handheld devices as well as base stations. The book serves as a reference and a handy guide for graduate students and PhD students involved in the field of millimeter wave antenna design. It also gives insights to designers and practicing engineers who are actively engaged in design of antennas for future 5G devices. It offers an in-depth study, performance analysis and extensive characterization of novel antennas for 5G applications. The reader will learn about basic design methodology and techniques to develop antennas for 5G applications including concepts of path loss compensation, co-design of commercial 4G antennas with millimeter wave 5G antennas and antennas used in phase array and pattern diversity modules. Practical examples included in the book will help readers to build high performance antennas for 5G subsystems/systems using low cost technology. Key Features Provides simple design methodology of different antennas for handheld devices as well as base stations for 5G applications. Concept of path loss compensation introduced. Co-design of commercial 4G antennas with millimetre wave 5G antennas presented. Comparison of phased array versus pattern diversity modules discussed in detail. Fabrication and Measurement challenges at mmWaves and Research Avenues in antenna designs for 5G and beyond presented. Shiban Kishen Koul is an emeritus professor at the Centre for Applied Research in Electronics at the Indian Institute of Technology Delhi. He served as the chairman of Astra Microwave Products Limited, Hyderabad from 2009-2018. He is a Life Fellow of the Institution of Electrical and Electronics Engineering (IEEE), USA, a Fellow of the Indian National Academy of Engineering (INAE), and a Fellow of the Institution of Electronics and Telecommunication Engineers (IETE). Karthikeya G S worked as an assistant professor in Visvesvaraya technological university from 2013 to 2016 and completed his PhD from the Centre for Applied Research in Electronics at the Indian Institute of Technology Delhi in Dec.2019. He is a member of IEEE-Antenna Propagation Society and Antenna Test and Measurement society.
Now in a newly updated and revised edition, this timely resource provides you with complete and current details on the theory, design, and applications of wireless antennas for on-body electronic systems. The Second Edition offers readers brand new material on advances in physical phantom design and production, recent developments in simulation methods and numerical phantoms, descriptions of methods for simulation of moving bodies, and the use of the body as a transmission channel. You also find a completely revised chapter on channel characterization and antenna design at microwave frequencies. This cutting-edge volume brings you the state-of-the-art in existing applications like Bluetooth headsets together with detailed treatment of techniques, tools, and challenges in developing on-body antennas for an array of medical, emergency response, law enforcement, personal entertainment, and military applications on the horizon. The book briefs you on energy propagation around and into the body and how to estimate performance of on-body wireless links, and then dives into the nuts-and-bolts of designing antenna systems that deliver the goods. It covers on-body communication channels at microwave frequency bands and at low frequency bands, as well as ultra wideband systems for WPANs and WBANs. You get details on body-centric UWB antennas and channels, as well as advances in wearable mobile, EBG, and smart fabricù antennas for cellular and WLAN communications. Chapters on telemedicine applications, such as remote diagnoses, and implantable medical devices cover crucial propagation issues and other obstacles that need to be addressed. Rounding out the coverage is a section on antenna design for body-sensor networks and their emerging military and space applications. Packed with hands-on guidance from noted experts, this volume will be indispensable for your efforts in designing and improving body-centric communication systems.
With the progress and rapid increase in mobile terminals, the design of antennas for these small systems is becoming more and more important. This forward-looking volume offers professionals current and comprehensive coverage of the design, development, and implementation of small, compact, and lightweight antennas in mobile communication terminals. The book discusses a wide range of communication systems, from Radio-frequency identification (RFID), and near field communications (NFC), to wireless power transmission (WPT) and broadband wireless networks. Engineers learn how to use small antennas in mobile phones, wearable systems, laptop computers, radio watches, and broadband wireless networks such as WLAN and WiMAX. This definite reference covers the critical applications today’s professionals need to understand, from antennas for IoT and antenna design for 5G mm-wave devices, to body-centric communication systems and antennas for unmanned aerial vehicles.
The latest text in the Wiley Series in Microwave and Optical Engineering The first comprehensive resource on planar antenna designs Planar antennas are the newest generation of antennas, boasting such attractive features as low profile, light weight, low cost, and ease of integration into arrays. These features make them ideal components of modern communications systems, particularly in cellular and WLAN applications. Consequently, many novel designs of planar antennas for related applications have come into being within the last two to three years. Until now these designs were only accessible to current and prospective antenna designers through journal articles, conference papers, and patent descriptions. Planar Antennas for Wireless Communications organizes today's most important planar antenna designs into one easy-to-use reference. In this, the latest addition to the Wiley Series in Microwave and Optical Engineering, the author presents more than seventy advanced planar antenna designs, along with detailed design considerations and experimental results, including: * PIFAs for internal mobile phone antennas * Very-low-profile monopoles for internal mobile phone antennas * Base-station antennas for cellular systems * Planar antennas for WLAN applications * DR antennas for wireless communications * Integration of antennas for different operating bands Each chapter features a multitude of illustrations for the geometries and experimental results of the featured designs, as well as a complete list of related references for further study, making the book an invaluable design resource for antenna scientists and engineers alike.
This exceptional book introduces the reader to the principles, theory and applications of physical layer wireless/mobile communications, applicators and millimetric antennas.
Compact antennas are a subject of growing interest from industry and scientific community to equip wireless communicating objects. The need for high performance small antennas and RF front ends is the challenge for future and next generation mobile devices. This book brings the body of knowledge on compact antennas into a single comprehensive volume. It is designed to meet the needs of electrical engineering and physics students to the senior undergraduate and beginning graduate levels, and those of practicing engineers.
The book serves as a comprehensive, one-stop resource, including in-depth coverage of multiband integrated antenna design, simulation, testing and manufacturing. This practical book helps you solve integration problems for ever-increasing multiband requirements. You find discussions on important considerations regarding future handset MIMO terminals, such as efficiency and the effect of the user. The book also shows you how to avoid tweaking for fractal multiband designs and printed dipole design.