Commutative Algebra
Author: Oscar Zariski
Publisher:
Published: 1975
Total Pages: 0
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Oscar Zariski
Publisher:
Published: 1975
Total Pages: 0
ISBN-13:
DOWNLOAD EBOOKAuthor: Michael F. Atiyah
Publisher: CRC Press
Published: 2018-03-09
Total Pages: 140
ISBN-13: 0429973268
DOWNLOAD EBOOKFirst Published in 2018. This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.
Author: Martin Kreuzer
Publisher: Springer Science & Business Media
Published: 2008-07-15
Total Pages: 325
ISBN-13: 354067733X
DOWNLOAD EBOOKThis introduction to polynomial rings, Gröbner bases and applications bridges the gap in the literature between theory and actual computation. It details numerous applications, covering fields as disparate as algebraic geometry and financial markets. To aid in a full understanding of these applications, more than 40 tutorials illustrate how the theory can be used. The book also includes many exercises, both theoretical and practical.
Author: Michiel Hazewinkel
Publisher: CRC Press
Published: 2016-04-05
Total Pages: 384
ISBN-13: 1482245051
DOWNLOAD EBOOKThe theory of algebras, rings, and modules is one of the fundamental domains of modern mathematics. General algebra, more specifically non-commutative algebra, is poised for major advances in the twenty-first century (together with and in interaction with combinatorics), just as topology, analysis, and probability experienced in the twentieth centu
Author: David Eisenbud
Publisher: Springer Science & Business Media
Published: 2013-12-01
Total Pages: 784
ISBN-13: 1461253500
DOWNLOAD EBOOKThis is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.
Author: Balwant Singh
Publisher: World Scientific
Published: 2011
Total Pages: 405
ISBN-13: 9814313629
DOWNLOAD EBOOKThis textbook, set for a one or two semester course in commutative algebra, provides an introduction to commutative algebra at the postgraduate and research levels. The main prerequisites are familiarity with groups, rings and fields. Proofs are self-contained. The book will be useful to beginners and experienced researchers alike. The material is so arranged that the beginner can learn through self-study or by attending a course. For the experienced researcher, the book may serve to present new perspectives on some well-known results, or as a reference.
Author: Martin Kreuzer
Publisher: Springer Science & Business Media
Published: 2005-07-06
Total Pages: 592
ISBN-13: 3540255273
DOWNLOAD EBOOK"The second volume of the authors’ ‘Computational commutative algebra’...covers on its 586 pages a wealth of interesting material with several unexpected applications. ... an encyclopedia on computational commutative algebra, a source for lectures on the subject as well as an inspiration for seminars. The text is recommended for all those who want to learn and enjoy an algebraic tool that becomes more and more relevant to different fields of applications." --ZENTRALBLATT MATH
Author: Siegfried Bosch
Publisher: Springer Nature
Published: 2022-04-22
Total Pages: 504
ISBN-13: 1447175239
DOWNLOAD EBOOKAlgebraic Geometry is a fascinating branch of Mathematics that combines methods from both Algebra and Geometry. It transcends the limited scope of pure Algebra by means of geometric construction principles. Putting forward this idea, Grothendieck revolutionized Algebraic Geometry in the late 1950s by inventing schemes. Schemes now also play an important role in Algebraic Number Theory, a field that used to be far away from Geometry. The new point of view paved the way for spectacular progress, such as the proof of Fermat's Last Theorem by Wiles and Taylor. This book explains the scheme-theoretic approach to Algebraic Geometry for non-experts, while more advanced readers can use it to broaden their view on the subject. A separate part presents the necessary prerequisites from Commutative Algebra, thereby providing an accessible and self-contained introduction to advanced Algebraic Geometry. Every chapter of the book is preceded by a motivating introduction with an informal discussion of its contents and background. Typical examples, and an abundance of exercises illustrate each section. Therefore the book is an excellent companion for self-studying or for complementing skills that have already been acquired. It can just as well serve as a convenient source for (reading) course material and, in any case, as supplementary literature. The present edition is a critical revision of the earlier text.
Author: Ernst Kunz
Publisher: Springer Science & Business Media
Published: 2012-11-06
Total Pages: 253
ISBN-13: 1461459877
DOWNLOAD EBOOKOriginally published in 1985, this classic textbook is an English translation of Einführung in die kommutative Algebra und algebraische Geometrie. As part of the Modern Birkhäuser Classics series, the publisher is proud to make Introduction to Commutative Algebra and Algebraic Geometry available to a wider audience. Aimed at students who have taken a basic course in algebra, the goal of the text is to present important results concerning the representation of algebraic varieties as intersections of the least possible number of hypersurfaces and—a closely related problem—with the most economical generation of ideals in Noetherian rings. Along the way, one encounters many basic concepts of commutative algebra and algebraic geometry and proves many facts which can then serve as a basic stock for a deeper study of these subjects.
Author: R. Y. Sharp
Publisher: Cambridge University Press
Published: 2000
Total Pages: 371
ISBN-13: 0521646235
DOWNLOAD EBOOKIntroductory account of commutative algebra, aimed at students with a background in basic algebra.