Combinatorial Mathematics

Combinatorial Mathematics

Author: Douglas B. West

Publisher: Cambridge University Press

Published: 2021

Total Pages: 990

ISBN-13: 1107058589

DOWNLOAD EBOOK

This is the most readable and thorough graduate textbook and reference for combinatorics, covering enumeration, graphs, sets, and methods.


Discrete and Combinatorial Mathematics

Discrete and Combinatorial Mathematics

Author: Ralph P. Grimaldi

Publisher:

Published: 2013-07-27

Total Pages: 930

ISBN-13: 9781292022796

DOWNLOAD EBOOK

This fifth edition continues to improve on the features that have made it the market leader. The text offers a flexible organization, enabling instructors to adapt the book to their particular courses. The book is both complete and careful, and it continues to maintain its emphasis on algorithms and applications. Excellent exercise sets allow students to perfect skills as they practice. This new edition continues to feature numerous computer science applications-making this the ideal text for preparing students for advanced study.


Geometric Etudes in Combinatorial Mathematics

Geometric Etudes in Combinatorial Mathematics

Author: Alexander Soifer

Publisher: Springer Science & Business Media

Published: 2010-06-15

Total Pages: 292

ISBN-13: 0387754695

DOWNLOAD EBOOK

Geometric Etudes in Combinatorial Mathematics is not only educational, it is inspirational. This distinguished mathematician captivates the young readers, propelling them to search for solutions of life’s problems—problems that previously seemed hopeless. Review from the first edition: The etudes presented here are not simply those of Czerny, but are better compared to the etudes of Chopin, not only technically demanding and addressed to a variety of specific skills, but at the same time possessing an exceptional beauty that characterizes the best of art...Keep this book at hand as you plan your next problem solving seminar. —The American Mathematical Monthly


Combinatorics

Combinatorics

Author: Nicholas Loehr

Publisher: CRC Press

Published: 2017-08-10

Total Pages: 849

ISBN-13: 149878027X

DOWNLOAD EBOOK

Combinatorics, Second Edition is a well-rounded, general introduction to the subjects of enumerative, bijective, and algebraic combinatorics. The textbook emphasizes bijective proofs, which provide elegant solutions to counting problems by setting up one-to-one correspondences between two sets of combinatorial objects. The author has written the textbook to be accessible to readers without any prior background in abstract algebra or combinatorics. Part I of the second edition develops an array of mathematical tools to solve counting problems: basic counting rules, recursions, inclusion-exclusion techniques, generating functions, bijective proofs, and linear algebraic methods. These tools are used to analyze combinatorial structures such as words, permutations, subsets, functions, graphs, trees, lattice paths, and much more. Part II cover topics in algebraic combinatorics including group actions, permutation statistics, symmetric functions, and tableau combinatorics. This edition provides greater coverage of the use of ordinary and exponential generating functions as a problem-solving tool. Along with two new chapters, several new sections, and improved exposition throughout, the textbook is brimming with many examples and exercises of various levels of difficulty.


Combinatorics and Graph Theory

Combinatorics and Graph Theory

Author: John Harris

Publisher: Springer Science & Business Media

Published: 2009-04-03

Total Pages: 392

ISBN-13: 0387797114

DOWNLOAD EBOOK

These notes were first used in an introductory course team taught by the authors at Appalachian State University to advanced undergraduates and beginning graduates. The text was written with four pedagogical goals in mind: offer a variety of topics in one course, get to the main themes and tools as efficiently as possible, show the relationships between the different topics, and include recent results to convince students that mathematics is a living discipline.


Combinatorics

Combinatorics

Author: Pavle Mladenović

Publisher: Springer

Published: 2019-03-13

Total Pages: 372

ISBN-13: 3030008312

DOWNLOAD EBOOK

This text provides a theoretical background for several topics in combinatorial mathematics, such as enumerative combinatorics (including partitions and Burnside's lemma), magic and Latin squares, graph theory, extremal combinatorics, mathematical games and elementary probability. A number of examples are given with explanations while the book also provides more than 300 exercises of different levels of difficulty that are arranged at the end of each chapter, and more than 130 additional challenging problems, including problems from mathematical olympiads. Solutions or hints to all exercises and problems are included. The book can be used by secondary school students preparing for mathematical competitions, by their instructors, and by undergraduate students. The book may also be useful for graduate students and for researchers that apply combinatorial methods in different areas.


Introduction to Combinatorics

Introduction to Combinatorics

Author: Walter D. Wallis

Publisher: CRC Press

Published: 2016-12-12

Total Pages: 424

ISBN-13: 1498777635

DOWNLOAD EBOOK

What Is Combinatorics Anyway? Broadly speaking, combinatorics is the branch of mathematics dealing with different ways of selecting objects from a set or arranging objects. It tries to answer two major kinds of questions, namely, counting questions: how many ways can a selection or arrangement be chosen with a particular set of properties; and structural questions: does there exist a selection or arrangement of objects with a particular set of properties? The authors have presented a text for students at all levels of preparation. For some, this will be the first course where the students see several real proofs. Others will have a good background in linear algebra, will have completed the calculus stream, and will have started abstract algebra. The text starts by briefly discussing several examples of typical combinatorial problems to give the reader a better idea of what the subject covers. The next chapters explore enumerative ideas and also probability. It then moves on to enumerative functions and the relations between them, and generating functions and recurrences., Important families of functions, or numbers and then theorems are presented. Brief introductions to computer algebra and group theory come next. Structures of particular interest in combinatorics: posets, graphs, codes, Latin squares, and experimental designs follow. The authors conclude with further discussion of the interaction between linear algebra and combinatorics. Features Two new chapters on probability and posets. Numerous new illustrations, exercises, and problems. More examples on current technology use A thorough focus on accuracy Three appendices: sets, induction and proof techniques, vectors and matrices, and biographies with historical notes, Flexible use of MapleTM and MathematicaTM