Combinatorial Materials Science

Combinatorial Materials Science

Author: Marc D. Porter

Publisher: John Wiley & Sons

Published: 2007-08-17

Total Pages: 247

ISBN-13: 0470140461

DOWNLOAD EBOOK

Combinatorial Materials Science describes new developments and research results in catalysts, biomaterials, and nanomaterials, together with informatics approaches to the analysis of Combinatorial Science (CombiSci) data. CombiSci has been used extensively in the pharmaceutical industry, but there is enormous potential in its application to materials design and characterization. Addressing advances and applications in both fields, Combinatorial Materials Science: Integrates the scientific fundamentals and interdisciplinary underpinnings required to develop and apply CombiSci concepts Discusses the development and use of CombiSci for the systematic and accelerated investigation of new phenomena and of the complex structure-function interplay in materials Covers the development of new library design strategies for materials processing and for high-throughput tools for rapid sampling Uses a unique, unified approach of applying combinatorial methods to unravel the non-linear structure-function relationships in diverse materials (both hard and soft), together with advances in informatics With chapters written by leading researchers in their specialty areas, this authoritative guide is a must-have resource for scientists and engineers in materials science research, biochemists, chemists, immunologists, cell biologists, polymer scientists, chemical and mechanical engineers, statisticians, and computer scientists. It is also a great text for graduate-level courses in materials science/engineering, polymer science, chemical engineering, and chemistry.


Dynamic Combinatorial Chemistry

Dynamic Combinatorial Chemistry

Author: Benjamin L. Miller

Publisher: John Wiley & Sons

Published: 2009-12-30

Total Pages: 280

ISBN-13: 9780470551547

DOWNLOAD EBOOK

Effective techniques for applying Dynamic Combinatorial Chemistry In a relatively short period, Dynamic Combinatorial Chemistry (DCC) has grown from proof-of-concept experiments in a few isolated labs to a broad conceptual framework with applications to an exceptional range of problems in molecular recognition, lead compound identification, catalyst design, nanotechnology, polymer science, and others. Bringing together a group of respected experts, this overview explains how chemists can apply DCC and fragment-based library methods to lead generation for drug discovery and molecular recognition in bioorganic chemistry and materials science. Chapters cover: Basic theory Approaches to binding in proteins and nucleic acids Molecular recognition Self-sorting Catalyst discovery Materials discovery Analytical chemistry challenges A comprehensive, single-source reference about DCC methods and applications including aspects of fragment-based drug discovery, this is a core reference that will spark the development of new solutions and strategies for chemists building structure libraries and designing compounds and materials.


Combinatorial Materials Synthesis

Combinatorial Materials Synthesis

Author: Xiao-Dong Xiang

Publisher: CRC Press

Published: 2003-08-19

Total Pages: 488

ISBN-13: 9780824741198

DOWNLOAD EBOOK

Pioneered by the pharmaceutical industry and adapted for the purposes of materials science and engineering, the combinatorial method is now widely considered a watershed in the accelerated discovery, development, and optimization of new materials. Combinatorial Materials Synthesis reveals the gears behind combinatorial materials chemistry and thin-film technology, and discusses the prime techniques involved in synthesis and property determination for experimentation with a variety of materials. Funneling historic innovations into one source, the book explores core approaches to synthesis and rapid characterization techniques for work with combinatorial materials libraries.


Information Science for Materials Discovery and Design

Information Science for Materials Discovery and Design

Author: Turab Lookman

Publisher: Springer

Published: 2015-12-12

Total Pages: 316

ISBN-13: 331923871X

DOWNLOAD EBOOK

This book deals with an information-driven approach to plan materials discovery and design, iterative learning. The authors present contrasting but complementary approaches, such as those based on high throughput calculations, combinatorial experiments or data driven discovery, together with machine-learning methods. Similarly, statistical methods successfully applied in other fields, such as biosciences, are presented. The content spans from materials science to information science to reflect the cross-disciplinary nature of the field. A perspective is presented that offers a paradigm (codesign loop for materials design) to involve iteratively learning from experiments and calculations to develop materials with optimum properties. Such a loop requires the elements of incorporating domain materials knowledge, a database of descriptors (the genes), a surrogate or statistical model developed to predict a given property with uncertainties, performing adaptive experimental design to guide the next experiment or calculation and aspects of high throughput calculations as well as experiments. The book is about manufacturing with the aim to halving the time to discover and design new materials. Accelerating discovery relies on using large databases, computation, and mathematics in the material sciences in a manner similar to the way used to in the Human Genome Initiative. Novel approaches are therefore called to explore the enormous phase space presented by complex materials and processes. To achieve the desired performance gains, a predictive capability is needed to guide experiments and computations in the most fruitful directions by reducing not successful trials. Despite advances in computation and experimental techniques, generating vast arrays of data; without a clear way of linkage to models, the full value of data driven discovery cannot be realized. Hence, along with experimental, theoretical and computational materials science, we need to add a “fourth leg’’ to our toolkit to make the “Materials Genome'' a reality, the science of Materials Informatics.


Handbook of Combinatorial Chemistry

Handbook of Combinatorial Chemistry

Author: K. C. Nicolaou

Publisher: Wiley-VCH

Published: 2002-04-29

Total Pages: 652

ISBN-13:

DOWNLOAD EBOOK

In two volumes, this comprehensive handbook provides coverage of the whole area of combinatorial synthetic chemistry, including compound library design and synthesis.


Combinatorial Library

Combinatorial Library

Author: Lisa B. English

Publisher: Springer Science & Business Media

Published: 2008-02-04

Total Pages: 380

ISBN-13: 1592592856

DOWNLOAD EBOOK

The continued successes of large- and small-scale genome sequencing projects are increasing the number of genomic targets available for drug d- covery at an exponential rate. In addition, a better understanding of molecular mechanisms—such as apoptosis, signal transduction, telomere control of ch- mosomes, cytoskeletal development, modulation of stress-related proteins, and cell surface display of antigens by the major histocompatibility complex m- ecules—has improved the probability of identifying the most promising genomic targets to counteract disease. As a result, developing and optimizing lead candidates for these targets and rapidly moving them into clinical trials is now a critical juncture in pharmaceutical research. Recent advances in com- natorial library synthesis, purification, and analysis techniques are not only increasing the numbers of compounds that can be tested against each specific genomic target, but are also speeding and improving the overall processes of lead discovery and optimization. There are two main approaches to combinatorial library production: p- allel chemical synthesis and split-and-mix chemical synthesis. These approaches can utilize solid- or solution-based synthetic methods, alone or in combination, although the majority of combinatorial library synthesis is still done on solid support. In a parallel synthesis, all the products are assembled separately in their own reaction vessels or microtiter plates. The array of rows and columns enables researchers to organize the building blocks to be c- bined, and provides an easy way to identify compounds in a particular well.


Materials Research to Meet 21st-Century Defense Needs

Materials Research to Meet 21st-Century Defense Needs

Author: National Research Council

Publisher: National Academies Press

Published: 2003-03-25

Total Pages: 660

ISBN-13: 0309087007

DOWNLOAD EBOOK

In order to achieve the revolutionary new defense capabilities offered by materials science and engineering, innovative management to reduce the risks associated with translating research results will be needed along with the R&D. While payoff is expected to be high from the promising areas of materials research, many of the benefits are likely to be evolutionary. Nevertheless, failure to invest in more speculative areas of research could lead to undesired technological surprises. Basic research in physics, chemistry, biology, and materials science will provide the seeds for potentially revolutionary technologies later in the 21st century.


Combinatorial Chemistry and Technologies

Combinatorial Chemistry and Technologies

Author: Stanislav Miertus

Publisher: CRC Press

Published: 2005-04-12

Total Pages: 597

ISBN-13: 1420027840

DOWNLOAD EBOOK

Several books on the market cover combinatorial techniques, but they offer just a limited perspective of the field, focusing on selected aspects without examining all approaches and integrated technologies. Combinatorial Chemistry and Technologies: Methods and Applications answers the demand for a complete overview of the field, covering all of the


Electron Backscatter Diffraction in Materials Science

Electron Backscatter Diffraction in Materials Science

Author: Adam J. Schwartz

Publisher: Springer Science & Business Media

Published: 2010-03-11

Total Pages: 406

ISBN-13: 0387881360

DOWNLOAD EBOOK

Electron backscatter diffraction is a very powerful and relatively new materials characterization technique aimed at the determination of crystallographic texture, grain boundary character distributions, lattice strain, phase identification, and much more. The purpose of this book is to provide the fundamental basis for electron backscatter diffraction in materials science, the current state of both hardware and software, and illustrative examples of the applications of electron backscatter diffraction to a wide-range of materials including undeformed and deformed metals and alloys, ceramics, and superconductors. The text has been substantially revised from the first edition, and the authors have kept the format as close as possible to the first edition text. The new developments covered in this book include a more comphrensive coverage of the fundamentals not covered in the first edition or other books in the field, the advances in hardware and software since the first edition was published, and current examples of application of electron backscatter diffraction to solve challenging problems in materials science and condensed-matter physics.


Combinatorics for Computer Science

Combinatorics for Computer Science

Author: Stanley Gill Williamson

Publisher: Courier Corporation

Published: 2002-01-01

Total Pages: 548

ISBN-13: 9780486420769

DOWNLOAD EBOOK

Useful guide covers two major subdivisions of combinatorics — enumeration and graph theory — with emphasis on conceptual needs of computer science. Each part is divided into a "basic concepts" chapter emphasizing intuitive needs of the subject, followed by four "topics" chapters that explore these ideas in depth. Invaluable practical resource for graduate students, advanced undergraduates, and professionals with an interest in algorithm design and other aspects of computer science and combinatorics. References for Linear Order & for Graphs, Trees, and Recursions. 219 figures.