This colour workbook for fashion, interior design and graphics, features 130asic colours and over 1000 colour combinations matched to a list of keymage-words.
Reporting the state of the art of colour image processing, this monograph fills a gap in the literature on digital signal and image processing. It contains numerous examples and pictures of colour image processing results, plus a library of algorithms implemented in C.
An experimental approach to the study and teaching of color is comprised of exercises in seeing color action and feeling color relatedness before arriving at color theory.
Unlike many other art books only give recipes for mixing colors or describe step-by-step painting techniques, *Color and Light* answers the questions that realist painters continually ask, such as: "What happens with sky colors at sunset?", "How do colors change with distance?", and "What makes a form look three-dimensional?" Author James Gurney draws on his experience as a plain-air painter and science illustrator to share a wealth of information about the realist painter's most fundamental tools: color and light. He bridges the gap between abstract theory and practical knowledge for traditional and digital artists of all levels of experience.
The classic work on the evaluation of city form. What does the city's form actually mean to the people who live there? What can the city planner do to make the city's image more vivid and memorable to the city dweller? To answer these questions, Mr. Lynch, supported by studies of Los Angeles, Boston, and Jersey City, formulates a new criterion—imageability—and shows its potential value as a guide for the building and rebuilding of cities. The wide scope of this study leads to an original and vital method for the evaluation of city form. The architect, the planner, and certainly the city dweller will all want to read this book.
Effective visualization is the best way to communicate information from the increasingly large and complex datasets in the natural and social sciences. But with the increasing power of visualization software today, scientists, engineers, and business analysts often have to navigate a bewildering array of visualization choices and options. This practical book takes you through many commonly encountered visualization problems, and it provides guidelines on how to turn large datasets into clear and compelling figures. What visualization type is best for the story you want to tell? How do you make informative figures that are visually pleasing? Author Claus O. Wilke teaches you the elements most critical to successful data visualization. Explore the basic concepts of color as a tool to highlight, distinguish, or represent a value Understand the importance of redundant coding to ensure you provide key information in multiple ways Use the book’s visualizations directory, a graphical guide to commonly used types of data visualizations Get extensive examples of good and bad figures Learn how to use figures in a document or report and how employ them effectively to tell a compelling story
Incredible artist Stanley "Artgerm" Lau has made a name for himself at Marvel Comics with a series of striking and instantly recognizable variant covers! His work has graced titles including ASTONISHING X-MEN, BLACK PANTHER, CAPTAIN MARVEL, MIGHTY THOR, SPIDER-GWEN, ABSOLUTE CARNAGE and more. Now Marvel proudly presents twelve gorgeous, full-color reproductions of some of his most iconic works from the House of Ideas - all in a stunning hardcover case.
Now in its fifth edition, John C. Russ‘s monumental image processing reference is an even more complete, modern, and hands-on tool than ever before. The Image Processing Handbook, Fifth Edition is fully updated and expanded to reflect the latest developments in the field. Written by an expert with unequalled experience and authority, it offers clea
Many approaches have been proposed to solve the problem of finding the optic flow field of an image sequence. Three major classes of optic flow computation techniques can discriminated (see for a good overview Beauchemin and Barron IBeauchemin19951): gradient based (or differential) methods; phase based (or frequency domain) methods; correlation based (or area) methods; feature point (or sparse data) tracking methods; In this chapter we compute the optic flow as a dense optic flow field with a multi scale differential method. The method, originally proposed by Florack and Nielsen [Florack1998a] is known as the Multiscale Optic Flow Constrain Equation (MOFCE). This is a scale space version of the well known computer vision implementation of the optic flow constraint equation, as originally proposed by Horn and Schunck [Horn1981]. This scale space variation, as usual, consists of the introduction of the aperture of the observation in the process. The application to stereo has been described by Maas et al. [Maas 1995a, Maas 1996a]. Of course, difficulties arise when structure emerges or disappears, such as with occlusion, cloud formation etc. Then knowledge is needed about the processes and objects involved. In this chapter we focus on the scale space approach to the local measurement of optic flow, as we may expect the visual front end to do. 17. 2 Motion detection with pairs of receptive fields As a biologically motivated start, we begin with discussing some neurophysiological findings in the visual system with respect to motion detection.