This monograph is a survey of recent research on the collision and interaction of gravitational and electromagnetic waves, a topic of particular importance to general relativity. 1991 edition, with updated postscript.
This monograph surveys recent research on the collision and interaction of gravitational and electromagnetic waves. "This is a particularly important topic in general relativity," the author notes, "since the theory predicts that there will be a nonlinear interaction between such waves." Geared toward graduate students and researchers in general relativity, the text offers a comprehensive and unified review of the vast literature on the subject. The first eight chapters offer background, presenting the field equations and discussing some qualitative aspects of their solution. Subsequent chapters explore further exact solutions for colliding plane gravitational waves and the collision and interaction of electromagnetic waves. The final chapters summarize all related results for the collision of plane waves of different types and in non-flat backgrounds. A new postscript updates developments since the book's initial 1991 publication.
This book is devoted to researchers who would like to investigate interactions among gravitational waves and matter fields beyond linear order, including the phenomena of memory effects, gravitational Faraday rotation, soft theorems, and formations of spacetime singularities due to the mutual focus of gravitational waves. Readers only require a basic understanding of general relativity to understand the materials.The book starts with an overview on the fundamentals of the Newman-Penrose formalism and a brief introduction to distribution theory, with which the author systematically develops a mathematical description of spacetimes of colliding plane waves. Then, the author presents a frame-independent definition of polarization of a plane gravitational wave in a curved spacetime, studies in detail the gravitational Faraday rotation of two plane gravitational waves, and shows that each of them can serve as a medium to the other precisely due to their nonlinear interactions. Exact solutions are also presented, which represent a variety of models including the collisions of two plane gravitational waves and the collisions of a plane gravitational wave with a dust shell, a massless scalar wave, an electromagnetic wave, or a neutrino wave. The formation of spacetime singularities due to nonlinear interactions and the effects of gravitational wave polarization on the nature of singularities are also explored.
Marcel Grossmann Meetings are formed to further the development of General Relativity by promoting theoretical understanding in the fields of physics, mathematics, astronomy and astrophysics and to direct future technological, observational, and experimental efforts. In these meetings are discussed recent developments in classical and quantum gravity, general relativity and relativistic astrophysics, with major emphasis on mathematical foundations and physical predictions, with the main objective of gathering scientists from diverse backgrounds for deepening the understanding of spacetime structure and reviewing the status of test-experiments for Einstein's theory of gravitation. The range of topics is broad, going from the more abstract classical theory, quantum gravity and strings, to the more concrete relativistic astrophysics observations and modeling.The three volumes of the proceedings of MG12 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting includes 29 plenary talks stretched over 6 mornings, and 74 parallel sessions over 5 afternoons. Volume A contains plenary and review talks ranging from the mathematical foundations of classical and quantum gravitational theories including recent developments in string theories, to precision tests of general relativity including progress towards the detection of gravitational waves, to relativistic astrophysics including such topics as gamma ray bursts, black hole physics both in our galaxy, in active galactic nuclei and in other galaxies, neutron stars, pulsar astrophysics, gravitational lensing effects, neutrino physics and ultra high energy cosmic rays. The rest of the volumes include parallel sessions on dark matter, neutrinos, X-ray sources, astrophysical black holes, neutron stars, binary systems, radiative transfer, accretion disks, alternative gravitational theories, perturbations of collapsed objects, analog models, black hole thermodynamics, cosmic background radiation & observational cosmology, numerical relativity & algebraic computing, gravitational lensing, variable ';constants'; of nature, large scale structure, topology of the universe, brane-world cosmology, early universe models & cosmic microwave background anisotropies, inhomogeneous cosmology, inflation, gamma ray burst modeling, supernovas, global structure, singularities, cosmic censorship, chaos, Einstein-Maxwell systems, inertial forces, gravitomagnetism, wormholes & time machines, exact solutions of Einstein's equations, gravitational waves, gravitational wave detectors & data analysis, precision gravitational measurements, history of relativity, quantum gravity & loop quantum gravity, Casimir effect, quantum cosmology, strings & branes, self-gravitating systems, gamma ray astronomy, cosmic rays, gamma ray bursts and quasars.
This book presents a comprehensive and self-contained exposition of the mathematical theory of impulsive light-like signals in general relativity. Applications are provided in relativistic astrophysics, cosmology and alternative theories of gravity deduced from string theory. Cataclysmic astrophysical events give rise to impulsive light-like signals which can generally be decomposed into a thin shell of null matter and an impulsive gravitational wave. Several examples are considered in black hole physics, wave collisions and light-like boosts of compact gravitating sources. Graduate students and researchers in relativistic astrophysics, cosmology and string theory will find this book very useful. Contents: General Description of an Impulsive Light-Like Signal; Illustrations and Implications of the Bianchi Identities; Light-Like Boosts of Gravitating Bodies; Spherically Symmetric Null Shells; Collisions of Plane Impulsive Light-Like Signals; Impulsive Light-Like Signals in Alternative Theories of Gravity. Readership: Researchers, graduate students and upper-level undergraduates interested in general relativity.
Einstein's theory of general relativity is a theory of gravity and, as in the earlier Newtonian theory, much can be learnt about the character of gravitation and its effects by investigating particular idealised examples. This book describes the basic solutions of Einstein's equations with a particular emphasis on what they mean, both geometrically and physically. Concepts such as big bang and big crunch-types of singularities, different kinds of horizons and gravitational waves, are described in the context of the particular space-times in which they naturally arise. These notions are initially introduced using the most simple and symmetric cases. Various important coordinate forms of each solution are presented, thus enabling the global structure of the corresponding space-time and its other properties to be analysed. The book is an invaluable resource both for graduate students and academic researchers working in gravitational physics.
This volume reviews some recent developments and new perspectives in classical and Quantum Gravity. The topics treated at a graduate level range from some new and old problems in General Relativity, algebraic computing, gravitational wave astronomy to some more speculative subjects as the early Universe, Quantum Gravity and Quantum Cosmology.
This proceedings contains the talks delivered at plenary and parallel sessions by leading researchers in both classical and quantum general relativity and in astrophysics.
Nonlinear dynamical systems play an important role in a number of disciplines. The physical, biological, economic and even sociological worlds are comprised of com plex nonlinear systems that cannot be broken down into the behavior of their con stituents and then reassembled to form the whole. The lack of a superposition principle in such systems has challenged researchers to use a variety of analytic and numerical methods in attempts to understand the interesting nonlinear interactions that occur in the World around us. General relativity is a nonlinear dynamical theory par excellence. Only recently has the nonlinear evolution of the gravitational field described by the theory been tackled through the use of methods used in other disciplines to study the importance of time dependent nonlinearities. The complexity of the equations of general relativity has been (and still remains) a major hurdle in the formulation of concrete mathematical concepts. In the past the imposition of a high degree of symmetry has allowed the construction of exact solutions to the Einstein equations. However, most of those solutions are nonphysical and of those that do have a physical significance, many are often highly idealized or time independent.
The second of three parts comprising Volume 54, the proceedings of the Summer Research Institute on Differential Geometry, held at the University of California, Los Angeles, July 1990 (ISBN for the set is 0-8218-1493-1). Among the subjects of Part 2 are gauge theory, symplectic geometry, complex ge