Particle Accelerator Physics

Particle Accelerator Physics

Author: Helmut Wiedemann

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 457

ISBN-13: 3662029030

DOWNLOAD EBOOK

Particle Accelerator Physics covers the dynamics of relativistic particle beams, basics of particle guidance and focusing, lattice design, characteristics of beam transport systems and circular accelerators. Particle-beam optics is treated in the linear approximation including sextupoles to correct for chromatic aberrations. Perturbations to linear beam dynamics are analyzed in detail and correction measures are discussed, while basic lattice design features and building blocks leading to the design of more complicated beam transport systems and circular accelerators are studied. Characteristics of synchrotron radiation and quantum effects due to the statistical emission of photons on particle trajectories are derived and applied to determine particle-beam parameters. The discussions specifically concentrate on relativistic particle beams and the physics of beam optics in beam transport systems and circular accelerators such as synchrotrons and storage rings. This book forms a broad basis for further, more detailed studies of nonlinear beam dynamics and associated accelerator physics problems, discussed in the subsequent volume.


Synchrotron Light Sources and Free-Electron Lasers

Synchrotron Light Sources and Free-Electron Lasers

Author: Eberhard J. Jaeschke

Publisher: Springer

Published: 2016-05-27

Total Pages: 0

ISBN-13: 9783319143934

DOWNLOAD EBOOK

Hardly any other discovery of the nineteenth century did have such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal find of the X-rays. X-ray tubes soon made their way as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and public security. Developing new radiation sources with higher brilliance and much extended spectral range resulted in stunning developments like the electron synchrotron and electron storage ring and the freeelectron laser. This handbook highlights these developments in fifty chapters. The reader is given not only an inside view of exciting science areas but also of design concepts for the most advanced light sources. The theory of synchrotron radiation and of the freeelectron laser, design examples and the technology basis are presented. The handbook presents advanced concepts like seeding and harmonic generation, the booming field of Terahertz radiation sources and upcoming brilliant light sources driven by laser-plasma accelerators. The applications of the most advanced light sources and the advent of nanobeams and fully coherent x-rays allow experiments from which scientists in the past could not even dream. Examples are the diffraction with nanometer resolution, imaging with a full 3D reconstruction of the object from a diffraction pattern, measuring the disorder in liquids with high spatial and temporal resolution. The 20th century was dedicated to the development and improvement of synchrotron light sources with an ever ongoing increase of brilliance. With ultrahigh brilliance sources, the 21st century will be the century of x-ray lasers and their applications. Thus, we are already close to the dream of condensed matter and biophysics: imaging single (macro)molecules and measuring their dynamics on the femtosecond timescale to produce movies with atomic resolution.


Particle Physics Reference Library

Particle Physics Reference Library

Author: Stephen Myers

Publisher: Springer Nature

Published: 2020-01-01

Total Pages: 867

ISBN-13: 303034245X

DOWNLOAD EBOOK

This third open access volume of the handbook series deals with accelerator physics, design, technology and operations, as well as with beam optics, dynamics and diagnostics. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A,B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access.


Hands-On Accelerator Physics Using MATLAB®

Hands-On Accelerator Physics Using MATLAB®

Author: Volker Ziemann

Publisher: CRC Press

Published: 2019-04-29

Total Pages: 373

ISBN-13: 0429957475

DOWNLOAD EBOOK

Awarded one of BookAuthority's best new Particle Physics books in 2019! Hands-On Accelerator Physics Using MATLAB® provides an introduction into the design and operational issues of a wide range of particle accelerators, from ion-implanters to the Large Hadron Collider at CERN. Many aspects from the design of beam optical systems and magnets, to the subsystems for acceleration, beam diagnostics, and vacuum are covered. Beam dynamics topics ranging from the beam-beam interaction to free-electron lasers are discussed. Theoretical concepts and the design of key components are explained with the help of MATLAB® code. Practical topics, such as beam size measurements, magnet construction and measurements, and radio-frequency measurements are explored in student labs without requiring access to an accelerator. This unique approach provides a look at what goes on 'under the hood' inside modern accelerators and presents readers with the tools to perform their independent investigations on the computer or in student labs. This book will be of interest to graduate students, postgraduate researchers studying accelerator physics, as well as engineers entering the field. Features: Provides insights into both synchrotron light sources and colliders Discusses technical subsystems, including magnets, radio-frequency engineering, instrumentation and diagnostics, correction of imperfections, control, and cryogenics Accompanied by MATLAB® code, including a 3D-modeler to visualize the accelerators, and additional appendices which are available on the CRC Press website MATLAB live-scripts to accompany the book can be found here: https://ziemann.web.cern.ch/ziemann/mybooks/mlx/