Richard Brauer (1901-1977) was one of the leading algebraists of this century. Although he contributed to a number of mathematical fields, Brauer devoted the major share of his efforts to the study of finite groups, a subject of considerable abstract interest and one that underlies many of the more recent advances in combinatorics and finite geometries.
This graduate textbook presents the basics of representation theory for finite groups from the point of view of semisimple algebras and modules over them. The presentation interweaves insights from specific examples with development of general and powerful tools based on the notion of semisimplicity. The elegant ideas of commutant duality are introduced, along with an introduction to representations of unitary groups. The text progresses systematically and the presentation is friendly and inviting. Central concepts are revisited and explored from multiple viewpoints. Exercises at the end of the chapter help reinforce the material. Representing Finite Groups: A Semisimple Introduction would serve as a textbook for graduate and some advanced undergraduate courses in mathematics. Prerequisites include acquaintance with elementary group theory and some familiarity with rings and modules. A final chapter presents a self-contained account of notions and results in algebra that are used. Researchers in mathematics and mathematical physics will also find this book useful. A separate solutions manual is available for instructors.
William Burnside was one of the three most important algebraists who were involved in the transformation of group theory from its nineteenth-century origins to a deep twentieth-century subject. Building on work of earlier mathematicians, they were able to develop sophisticated tools for solving difficult problems. All of Burnside's papers are reproduced here, organized chronologically and with a detailed bibliography. Walter Feit has contributed a foreword, and a collection of introductory essays are included to provide a commentary on Burnside's work and set it in perspective along with a modern biography that draws on archive material.
I.M. Gelfand (1913 - 2009), one of the world's leading contemporary mathematicians, largely determined the modern view of functional analysis with its numerous relations to other branches of mathematics, including mathematical physics, algebra, topology, differential geometry and analysis. In this three-volume Collected Papers Gelfand presents a representative sample of his work. Gelfand's research led to the development of remarkable mathematical theories - most of which are now classics - in the field of Banach algebras, infinite-dimensional representations of Lie groups, the inverse Sturm-Liouville problem, cohomology of infinite-dimensional Lie algebras, integral geometry, generalized functions and general hypergeometric functions. The corresponding papers form the major part of the collection. Some articles on numerical methods and cybernetics as well as a few on biology are also included. A substantial number of the papers have been translated into English especially for this edition. The collection is rounded off by an extensive bibliography with almost 500 references. Gelfand's Collected Papers will be a great stimulus, especially for the younger generation, and will provide a strong incentive to researchers.
This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.
This book is intended to present group representation theory at a level accessible to mature undergraduate students and beginning graduate students. This is achieved by mainly keeping the required background to the level of undergraduate linear algebra, group theory and very basic ring theory. Module theory and Wedderburn theory, as well as tensor products, are deliberately avoided. Instead, we take an approach based on discrete Fourier Analysis. Applications to the spectral theory of graphs are given to help the student appreciate the usefulness of the subject. A number of exercises are included. This book is intended for a 3rd/4th undergraduate course or an introductory graduate course on group representation theory. However, it can also be used as a reference for workers in all areas of mathematics and statistics.
One of the greatest mathematicians in the world, Michael Atiyah has earned numerous honors, including a Fields Medal, the mathematical equivalent of the Nobel Prize. While the focus of his work has been in the areas of algebraic geometry and topology, he has also participated in research with theoretical physicists. For the first time, these volumes bring together Atiyah's collected papers--both monographs and collaborative works-- including those dealing with mathematical education and current topics of research such as K-theory and gauge theory. The volumes are organized thematically. They will be of great interest to research mathematicians, theoretical physicists, and graduate students in these areas.