PRICM-8 features the most prominent and largest-scale interactions in advanced materials and processing in the Pacific Rim region. The conference is unique in its intrinsic nature and architecture which crosses many traditional discipline and cultural boundaries. This is a comprehensive collection of papers from the 15 symposia presented at this event.
Ongoing advancements in modern technology have led to significant developments in artificial intelligence. With the numerous applications available, it becomes imperative to conduct research and make further progress in this field. Artificial Intelligence: Concepts, Methodologies, Tools, and Applications provides a comprehensive overview of the latest breakthroughs and recent progress in artificial intelligence. Highlighting relevant technologies, uses, and techniques across various industries and settings, this publication is a pivotal reference source for researchers, professionals, academics, upper-level students, and practitioners interested in emerging perspectives in the field of artificial intelligence.
Pressure vessels are closed containers designed to hold gases or liquids at a pressure substantially different from the ambient pressure. They have a variety of applications in industry, including in oil refineries, nuclear reactors, vehicle airbrake reservoirs, and more. The pressure differential with such vessels is dangerous, and due to the risk of accident and fatality around their use, the design, manufacture, operation and inspection of pressure vessels is regulated by engineering authorities and guided by legal codes and standards. Pressure Vessel Design Manual is a solutions-focused guide to the many problems and technical challenges involved in the design of pressure vessels to match stringent standards and codes. It brings together otherwise scattered information and explanations into one easy-to-use resource to minimize research and take readers from problem to solution in the most direct manner possible. - Covers almost all problems that a working pressure vessel designer can expect to face, with 50+ step-by-step design procedures including a wealth of equations, explanations and data - Internationally recognized, widely referenced and trusted, with 20+ years of use in over 30 countries making it an accepted industry standard guide - Now revised with up-to-date ASME, ASCE and API regulatory code information, and dual unit coverage for increased ease of international use
Incorporating Chinese, European, and International standards and units of measurement, this book presents a classic subject in an up-to-date manner with a strong emphasis on failure analysis and prevention-based machine element design. It presents concepts, principles, data, analyses, procedures, and decision-making techniques necessary to design safe, efficient, and workable machine elements. Design-centric and focused, the book will help students develop the ability to conceptualize designs from written requirements and to translate these design concepts into models and detailed manufacturing drawings. Presents a consistent approach to the design of different machine elements from failure analysis through strength analysis and structural design, which facilitates students’ understanding, learning, and integration of analysis with design Fundamental theoretical topics such as mechanics, friction, wear and lubrication, and fluid mechanics are embedded in each chapter to illustrate design in practice Includes examples, exercises, review questions, design and practice problems, and CAD examples in each self-contained chapter to enhance learning Analysis and Design of Machine Elements is a design-centric textbook for advanced undergraduates majoring in Mechanical Engineering. Advanced students and engineers specializing in product design, vehicle engineering, power machinery, and engineering will also find it a useful reference and practical guide.
This collection gives broad and up-to-date results in the research and development of materials characterization and processing. Topics covered include characterization methods, ferrous materials, non-ferrous materials, minerals, ceramics, polymer and composites, powders, extraction, microstructure, mechanical behavior, processing, corrosion, welding, solidification, magnetic, electronic, environmental, nano-materials, and advanced materials The book explores scientific processes to characterize materials using modern technologies, and focuses on the interrelationships and interdependence among processing, structure, properties, and performance of materials.
First book on rubber used as a construction material dedicated to the chemical process industry Despite the long history of rubber as a construction material, this book is a unique publication as it comprehensively looks at the material with respect to the anti-corrosion requirements of the multitude of industries where rubber is used, both on land and offshore. This guide documents how rubber reliably meets the threats of corrosion and contributes to the longevity of the equipment. Chapters on ebonite, natural, and synthetic rubbers, examine their relevant properties and chemical resistance. The book details the practical aspects and handling of rubber lined equipment: thin-walled structures, vacuum vessels, ducts, large diameter tanks, agitators, and fully lined pipes (both inside and outside). Molded and fabricated products of ebonite and soft rubber as well as hand-made rubber products are shown along with vulcanization technology, testing and inspections, measurements and standards. Several case studies are included demonstrating the preferential choice of rubber as a construction material as well as practical applications and techniques of its usage in the chlor-alkali, fertilizer, mineral processing and other core chemical processing industries, which are the largest consumers of rubber as a material of construction. The volume ends with a section on aging and prediction of service life. Rubber as a Construction Material for Corrosion Protection will be used by chemical engineers, rubber technologists, students, research workers worldwide in the rubber industry and process industries such as fertilizer, mining and ore, oil & gas, paper and pulp, steel plants, as well as people engaged in corrosion protection. The book will also be very useful to the construction industry.
Written to educate readers about recent advances in the area of new materials used in making products. Materials and their properties usually limit the component designer. * Presents information about all of these advanced materials that enable products to be designed in a new way * Provides a cost effective way for the design engineer to become acquainted with new materials * The material expert benefits by being aware of the latest development in all these areas so he/she can focus on further improvements