Cohomology in Banach Algebras

Cohomology in Banach Algebras

Author: Barry Edward Johnson

Publisher: American Mathematical Soc.

Published: 1972

Total Pages: 104

ISBN-13: 0821818279

DOWNLOAD EBOOK

Let [Fraktur capital]A be a Banach algebra, [Fraktur capital]X a two-sided Banach [Fraktur capital] A-module, and define the cohomology groups [italic]H[italic superscript]n([Fraktur capital]A, [Fraktur capital]X) from the complex of bounded cochains in exact analogy to the classical (algebraic) case. This article gives an introduction to several aspects of the resulting theory.


Banach Algebras and Applications

Banach Algebras and Applications

Author: Mahmoud Filali

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2020-08-24

Total Pages: 264

ISBN-13: 3110602415

DOWNLOAD EBOOK

Banach algebras is a multilayered area in mathematics with many ramifications. With a diverse coverage of different schools working on the subject, this proceedings volume reflects recent achievements in areas such as Banach algebras over groups, abstract harmonic analysis, group actions, amenability, topological homology, Arens irregularity, C*-algebras and dynamical systems, operator theory, operator spaces, and locally compact quantum groups.


Bounded Cohomology of Discrete Groups

Bounded Cohomology of Discrete Groups

Author: Roberto Frigerio

Publisher: American Mathematical Soc.

Published: 2017-11-21

Total Pages: 213

ISBN-13: 1470441462

DOWNLOAD EBOOK

The theory of bounded cohomology, introduced by Gromov in the late 1980s, has had powerful applications in geometric group theory and the geometry and topology of manifolds, and has been the topic of active research continuing to this day. This monograph provides a unified, self-contained introduction to the theory and its applications, making it accessible to a student who has completed a first course in algebraic topology and manifold theory. The book can be used as a source for research projects for master's students, as a thorough introduction to the field for graduate students, and as a valuable landmark text for researchers, providing both the details of the theory of bounded cohomology and links of the theory to other closely related areas. The first part of the book is devoted to settling the fundamental definitions of the theory, and to proving some of the (by now classical) results on low-dimensional bounded cohomology and on bounded cohomology of topological spaces. The second part describes applications of the theory to the study of the simplicial volume of manifolds, to the classification of circle actions, to the analysis of maximal representations of surface groups, and to the study of flat vector bundles with a particular emphasis on the possible use of bounded cohomology in relation with the Chern conjecture. Each chapter ends with a discussion of further reading that puts the presented results in a broader context.


The Homology of Banach and Topological Algebras

The Homology of Banach and Topological Algebras

Author: A.Y. Helemskii

Publisher: Springer Science & Business Media

Published: 1989-10-31

Total Pages: 360

ISBN-13: 9780792302179

DOWNLOAD EBOOK

'Et moi *.... si j'avait su comment en revenir. One service mathematics has rendered the human race. It has put common sense back je n'y serais point aUe.' it belongs. on the topmost shelf next Jules Verne where to the dusty canister labelled 'discarded non· The series is divergent: therefore we may be sense'. Eric T. Bell able to do something with it. o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non­ linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com­ puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.


Banach Algebras and Several Complex Variables

Banach Algebras and Several Complex Variables

Author: John Wermer

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 169

ISBN-13: 1475738781

DOWNLOAD EBOOK

During the past twenty years many connections have been found between the theory of analytic functions of one or more complex variables and the study of commutative Banach algebras. On the one hand, function theory has been used to answer algebraic questions such as the question of the existence of idempotents in a Banach algebra. On the other hand, concepts arising from the study of Banach algebras such as the maximal ideal space, the Silov boundary, Gleason parts, etc. have led to new questions and to new methods of proof in function theory. Roughly one third of this book isconcerned with developing some of the principal applications of function theory in several complex variables to Banach algebras. We presuppose no knowledge of severalcomplex variables on the part of the reader but develop the necessary material from scratch. The remainder of the book deals with problems of uniform approximation on compact subsets of the space of n complex variables. For n > I no complete theory exists but many important particular problems have been solved. Throughout, our aim has been to make the exposition elementary and self-contained. We have cheerfully sacrificed generality and completeness all along the way in order to make it easier to understand the main ideas.


Hochschild Cohomology for Algebras

Hochschild Cohomology for Algebras

Author: Sarah J. Witherspoon

Publisher: American Mathematical Soc.

Published: 2019-12-10

Total Pages: 265

ISBN-13: 1470449315

DOWNLOAD EBOOK

This book gives a thorough and self-contained introduction to the theory of Hochschild cohomology for algebras and includes many examples and exercises. The book then explores Hochschild cohomology as a Gerstenhaber algebra in detail, the notions of smoothness and duality, algebraic deformation theory, infinity structures, support varieties, and connections to Hopf algebra cohomology. Useful homological algebra background is provided in an appendix. The book is designed both as an introduction for advanced graduate students and as a resource for mathematicians who use Hochschild cohomology in their work.


Banach Algebras and Automatic Continuity

Banach Algebras and Automatic Continuity

Author: Harold G. Dales

Publisher: Oxford University Press on Demand

Published: 2000

Total Pages: 907

ISBN-13: 9780198500131

DOWNLOAD EBOOK

Banach algebras combine algebraic and analytical aspects: it is the interplay of these structures that gives the subject its fascination. This volume expounds the general theory of Banach algebras, and shows how their topology is often determined by their algebraic structure: the central questions ask when homomorphisms and derivations from Banach algebras are automatically continuous, and seek canonical forms for these maps. The book synthesizes work over the last 20 years, and givesa definitive account; there are many new and unpublished results. The book describes many specific classes of Banach algebras, including function algebras, group algebras, algebras of operators, C*-algebras, and radical Banach algebras; it is a compendium of results on these examples. The subject interweaves algebra, functional analysis, and complex analysis, and has a dash of set theory and logic; the background in all these areas is fully explained. This volume is essential reading for anyone interested in any aspect of this vast subject.