Generalized Coherent States and Their Applications

Generalized Coherent States and Their Applications

Author: Askold Perelomov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 323

ISBN-13: 3642616291

DOWNLOAD EBOOK

This monograph treats an extensively developed field in modern mathematical physics - the theory of generalized coherent states and their applications to various physical problems. Coherent states, introduced originally by Schrodinger and von Neumann, were later employed by Glauber for a quantal description of laser light beams. The concept was generalized by the author for an arbitrary Lie group. In the last decade the formalism has been widely applied to various domains of theoretical physics and mathematics. The area of applications of generalized coherent states is very wide, and a comprehensive exposition of the results in the field would be helpful. This monograph is the first attempt toward this aim. My purpose was to compile and expound systematically the vast amount of material dealing with the coherent states and available through numerous journal articles. The book is based on a number of undergraduate and postgraduate courses I delivered at the Moscow Physico-Technical Institute. In its present form it is intended for professional mathematicians and theoretical physicists; it may also be useful for university students of mathematics and physics. In Part I the formalism is elaborated and explained for some of the simplest typical groups. Part II contains more sophisticated material; arbitrary Lie groups and symmetrical spaces are considered. A number of examples from various areas of theoretical and mathematical physics illustrate advantages of this approach, in Part III. It is a pleasure for me to thank Dr. Yu. Danilov for many useful remarks.


Coherent States

Coherent States

Author: John R. Klauder

Publisher: World Scientific

Published: 1985

Total Pages: 934

ISBN-13: 9789971966522

DOWNLOAD EBOOK

This volume is a review on coherent states and some of their applications. The usefulness of the concept of coherent states is illustrated by considering specific examples from the fields of physics and mathematical physics. Particular emphasis is given to a general historical introduction, general continuous representations, generalized coherent states, classical and quantum correspondence, path integrals and canonical formalism. Applications are considered in quantum mechanics, optics, quantum chemistry, atomic physics, statistical physics, nuclear physics, particle physics and cosmology. A selection of original papers is reprinted.


Coherent States and Applications in Mathematical Physics

Coherent States and Applications in Mathematical Physics

Author: Monique Combescure

Publisher: Springer Science & Business Media

Published: 2012-02

Total Pages: 419

ISBN-13: 9400701950

DOWNLOAD EBOOK

This book presents the various types of coherent states introduced and studied in the physics and mathematics literature and describes their properties together with application to quantum physics problems. It is intended to serve as a compendium on coherent states and their applications for physicists and mathematicians, stretching from the basic mathematical structures of generalized coherent states in the sense of Perelomov via the semiclassical evolution of coherent states to various specific examples of coherent states (hydrogen atom, quantum oscillator, ...).


Coherent States, Wavelets, and Their Generalizations

Coherent States, Wavelets, and Their Generalizations

Author: Syed Twareque Ali

Publisher: Springer Science & Business Media

Published: 2013-10-30

Total Pages: 586

ISBN-13: 1461485355

DOWNLOAD EBOOK

This second edition is fully updated, covering in particular new types of coherent states (the so-called Gazeau-Klauder coherent states, nonlinear coherent states, squeezed states, as used now routinely in quantum optics) and various generalizations of wavelets (wavelets on manifolds, curvelets, shearlets, etc.). In addition, it contains a new chapter on coherent state quantization and the related probabilistic aspects. As a survey of the theory of coherent states, wavelets, and some of their generalizations, it emphasizes mathematical principles, subsuming the theories of both wavelets and coherent states into a single analytic structure. The approach allows the user to take a classical-like view of quantum states in physics. Starting from the standard theory of coherent states over Lie groups, the authors generalize the formalism by associating coherent states to group representations that are square integrable over a homogeneous space; a further step allows one to dispense with the group context altogether. In this context, wavelets can be generated from coherent states of the affine group of the real line, and higher-dimensional wavelets arise from coherent states of other groups. The unified background makes transparent an entire range of properties of wavelets and coherent states. Many concrete examples, such as coherent states from semisimple Lie groups, Gazeau-Klauder coherent states, coherent states for the relativity groups, and several kinds of wavelets, are discussed in detail. The book concludes with a palette of potential applications, from the quantum physically oriented, like the quantum-classical transition or the construction of adequate states in quantum information, to the most innovative techniques to be used in data processing. Intended as an introduction to current research for graduate students and others entering the field, the mathematical discussion is self-contained. With its extensive references to the research literature, the first edition of the book is already a proven compendium for physicists and mathematicians active in the field, and with full coverage of the latest theory and results the revised second edition is even more valuable.


Coherent States in Quantum Physics

Coherent States in Quantum Physics

Author: Jean-Pierre Gazeau

Publisher: Wiley-VCH

Published: 2009-09-03

Total Pages: 384

ISBN-13: 3527628290

DOWNLOAD EBOOK

This self-contained introduction discusses the evolution of the notion of coherent states, from the early works of Schrödinger to the most recent advances, including signal analysis. An integrated and modern approach to the utility of coherent states in many different branches of physics, it strikes a balance between mathematical and physical descriptions. Split into two parts, the first introduces readers to the most familiar coherent states, their origin, their construction, and their application and relevance to various selected domains of physics. Part II, mostly based on recent original results, is devoted to the question of quantization of various sets through coherent states, and shows the link to procedures in signal analysis.


Coherent States and Their Applications

Coherent States and Their Applications

Author: Jean-Pierre Antoine

Publisher: Springer

Published: 2018-06-01

Total Pages: 350

ISBN-13: 3319767321

DOWNLOAD EBOOK

Coherent states (CS) were originally introduced in 1926 by Schrödinger and rediscovered in the early 1960s in the context of laser physics. Since then, they have evolved into an extremely rich domain that pervades virtually every corner of physics, and have also given rise to a range of research topics in mathematics. The purpose of the 2016 CIRM conference was to bring together leading experts in the field with scientists interested in related topics, to jointly investigate their applications in physics, their various mathematical properties, and their generalizations in many directions. Instead of traditional proceedings, this book presents sixteen longer review-type contributions, which are the outcome of a collaborative effort by many conference participants, subsequently reviewed by independent experts. The book aptly illustrates the diversity of CS aspects, from purely mathematical topics to physical applications, including quantum gravity.


Path Integrals and Coherent States of SU(2) and SU(1,1)

Path Integrals and Coherent States of SU(2) and SU(1,1)

Author: Akira Inomata

Publisher: World Scientific

Published: 1992

Total Pages: 338

ISBN-13: 9789810206567

DOWNLOAD EBOOK

The authors examine several topical subjects, commencing with a general introduction to path integrals in quantum mechanics and the group theoretical backgrounds for path integrals. Applications of harmonic analysis, polar coordinate formulation, various techniques and path integrals on SU(2) and SU(1, 1) are discussed. Soluble examples presented include particle-flux system, a pulsed oscillator, magnetic monopole, the Coulomb problem in curved space and others.The second part deals with the SU(2) coherent states and their applications. Construction and generalization of the SU(2) coherent states, formulation of coherent path integrals for spin and unitary spin, and semiclassical quantization are presented. Applications are made to the study of quantum fluctuation, the nonlinear field model and phase holonomy.The final chapters present the theory of the SU(1, 1) coherent states and their applications. The radial coulomb problem, the Morse oscillator, and the large-N approximation are discussed. Applications to problems in quantum optics such as squeezed states, interaction with the squeezed vacuum states, and phase operator formalism are also included.This book will be useful as an introduction to the subject as well as a valuable work of reference.


Compendium of Quantum Physics

Compendium of Quantum Physics

Author: Daniel Greenberger

Publisher: Springer Science & Business Media

Published: 2009-07-25

Total Pages: 901

ISBN-13: 3540706267

DOWNLOAD EBOOK

With contributions by leading quantum physicists, philosophers and historians, this comprehensive A-to-Z of quantum physics provides a lucid understanding of key concepts of quantum theory and experiment. It covers technical and interpretational aspects alike, and includes both traditional and new concepts, making it an indispensable resource for concise, up-to-date information about the many facets of quantum physics.


Geometry of Quantum States

Geometry of Quantum States

Author: Ingemar Bengtsson

Publisher: Cambridge University Press

Published: 2017-08-18

Total Pages: 637

ISBN-13: 1108293492

DOWNLOAD EBOOK

Quantum information theory is a branch of science at the frontier of physics, mathematics, and information science, and offers a variety of solutions that are impossible using classical theory. This book provides a detailed introduction to the key concepts used in processing quantum information and reveals that quantum mechanics is a generalisation of classical probability theory. The second edition contains new sections and entirely new chapters: the hot topic of multipartite entanglement; in-depth discussion of the discrete structures in finite dimensional Hilbert space, including unitary operator bases, mutually unbiased bases, symmetric informationally complete generalized measurements, discrete Wigner function, and unitary designs; the Gleason and Kochen–Specker theorems; the proof of the Lieb conjecture; the measure concentration phenomenon; and the Hastings' non-additivity theorem. This richly-illustrated book will be useful to a broad audience of graduates and researchers interested in quantum information theory. Exercises follow each chapter, with hints and answers supplied.