Care for a trip to the outer space? Just get into this book and discover the stars and galaxies, planets and moons, comets and asteroids and many other heavenly objects that make up the Universe. Interesting information, fascinating facts, together with fabulous photographs, make this book a must have.
This volume provides a detailed description of some of the most active areas in astrophysics from the largest scales probed by the Planck satellite to massive black holes that lie at the heart of galaxies and up to the much awaited but stunning discovery of thousands of exoplanets. It contains the following chapters: • Jean-Philippe UZAN, The Big-Bang Theory: Construction, Evolution and Status • Jean-Loup PUGET, The Planck Mission and the Cosmic Microwave Background • Reinhard GENZEL, Massive Black Holes: Evidence, Demographics and Cosmic Evolution • Arnaud CASSAN, New Worlds Ahead: The Discovery of Exoplanets Reinhard Genzel and Andrea Ghez shared the 2020 Nobel Prize in Physics “for the discovery of a supermassive compact object at the centre of our galaxy’”, alongside Roger Penrose “for the discovery that black hole formation is a robust prediction of the general theory of relativity”. The book corresponds to the twentieth Poincaré Seminar, held on November 21, 2015, at Institut Henri Poincaré in Paris. Originally written as lectures to a broad scientific audience, these four chapters are of high value and will be of general interest to astrophysicists, physicists, mathematicians and historians.
Habitability of the Universe before Earth: Astrobiology: Exploring Life on Earth and Beyond (series) examines the times and places—before life existed on Earth—that might have provided suitable environments for life to occur, addressing the question: Is life on Earth de novo, or derived from previous life? The universe changed considerably during the vast epoch between the Big Bang 13.8 billion years ago and the first evidence of life on Earth 4.3 billion years ago, providing significant time and space to contemplate where, when and under what circumstances life might have arisen. No other book covers this cosmic time period from the point of view of its potential for life. The series covers a broad range of topics encompassing laboratory and field research into the origins and evolution of life on Earth, life in extreme environments and the search for habitable environments in our solar system and beyond, including exoplanets, exomoons and astronomical biosignatures. - Provides multiple hypotheses on the origin of life and distribution of living organisms in space - Explores the diversity of physical environments that may support the origin and evolution of life - Integrates contemporary views in biology and cosmology, and provides reasons that life is far more mobile in space than most people expect - Includes access to a companion web site featuring supplementary information such as animated computer simulations
The International Conference "Primordial Nucleosynthesis and Evolution of Early Universe" was held in the presence of Prof. William Fowler on 4 - 8 September 1990 at the Sanjo Conference Hall, the University of Tokyo. This conference was co-sponsored by IUPAP, the International Union of Pure and Applied Physics, and by the University of Tokyo. The number of participants was 156, 58 from 15 foreign countries and 98 from Japan. About 120 contributions were submitted orally or as posters. Originally this conference was planned as a small gathering on Primordial Nucleosynthesis as indicated in the title, since primordial nucleosynthesis is the most important probe of the early stage of the universe. As is well known, light element abundances strongly depend on the time evolution of temperature and density. In this sense we can say that primordial nucleosynthesis is both the thermometer and speedometer of the early universe. Moreover, recently it has been claimed that primordial nucleosynthesis is an indicator of inhomogeneity of the early universe too. Now research of the primordial nucleosynthesis is in a boom. We, however, decided to include observational cosmology, of observations. taking into account the recent remarkable results Nowadays, to reveal the large scale structure of the universe and discover its origin is a main subject in cosmology. We invited distinguished scientists from all over the world, and very fortunately almost all these people accepted to attend this conference.
Session I : Primordial nucleosynthesis and the first stars in the Universe -- Session II : First stars in the Galaxy -- Session III : Chemical abundances in the high red-shift Universe -- Session IV : Chemical abundance constraints on mass assembly and star formation in local galaxies and the Milky Way -- Session V : Extrasolar planets: the chemical abundance connection -- Session VI : Abundance surveys and projects in the era of future large telescopes.
This book was conceived to commemorate the continuing success of the guest observer program for the International Ultraviolet Explorer (IUE) satellite observatory. It is also hoped that this volume will serve as a useful tutorial for those pursuing research in related fields with future space observatories. As the IUE has been the product of the three-way collaboration between the U.S. National Aeronautics and Space Administration (NASA), European Space Agency (ESA) and the British Engineering and Research Council (SERC), so is this book the fruit of the collaboration of the American and European participants in the IUE. As such, it is a testimony to timely international cooperation and sharing of resources that open up new possibilities. The IUE spacecraft was launched on the 26th of January in 1978 into a geosynchronous orbit over the Atlantic Ocean. The scientific operations of the IUE are performed for 16 hours a day from Goddard Space Flight Center in Greenbelt, Maryland, U.S.A, and for 8 hours a day from ESA Villafranca Satellite Tracking Station near Madrid, Spain.
This 22nd volume in the series contains 15 invited reviews and highlight contributions from outstanding speakers presented during the 2009 annual meeting of the Astronomical Society on the subject of "Deciphering the Universe through Spectroscopy", held in Potsdam, Germany. Topics range from the measurements of magnetic fields on the surface of the sun via detailed measurements of abundances in stellar atmospheres to the kinematics of the universe at its largest scales. The result is a systematic overview of the latest astronomical and cosmological research.
Up to date and comprehensive in its coverage, Neutrinos in Particle Physics, Astrophysics and Cosmology reviews the whole landscape of neutrino physics, from state-of-the-art experiments to the latest phenomenological and theoretical developments to future advances.With contributions from internationally recognized leaders in the field, the book co
This up-to-date volume offers student researchers an unexcelled primer on current scientific knowledge about stars. This volume in the Greenwood Guides to the Universe series provides the most up-to-date understanding available of the current knowledge about stars. Scientifically sound, but written with the student in mind, Stars is an excellent first step for young people researching the exciting scientific discoveries that continue to extend our knowledge of the universe. Stars is organized thematically to help students better understand these most interesting heavenly bodies. Stars discusses all areas of what is known about the subject. It will help student understand things such as white dwarfs, neutron stars, pulsars, and black holes. And it will answer student questions such as: Why do stars have different colors and how are they classified? How do we know what stars are made of? How did scientists figure out how stars evolved?
'Why'? Why is the world, the Universe the way it is? Is space infinitely large? How small is small? What happens when one continues to divide matter into ever smaller pieces? Indeed, what is matter? Is there anything else besides what can be seen? Pursuing the questions employing the leading notions of physics, one soon finds that the tangible and visible world dissolves — rather unexpectedly — into invisible things and domains that are beyond direct perception. A remarkable feature of our Universe is that most of its constituents turn out to be invisible, and this fact is brought out with great force by this book.Exploring the Invisible Universe covers the gamut of topics in advanced modern physics and provides extensive and well substantiated answers to these questions and many more. Discussed in a non-technical, yet also non-trivial manner, are topics dominated by invisible things — such as Black Holes and Superstrings as well as Fields, Gravitation, the Standard Model, Cosmology, Relativity, the Origin of Elements, Stars and Planetary Evolution, and more. Just giving the answer, as so many books do, is really not telling anything at all. To truly answer the 'why' questions of nature, one needs to follow the chain of reasoning that scientists have used to come to the conclusions they have. This book does not shy away from difficult-to-explain topics by reducing them to one-line answers and power phrases suitable for a popular talk show. The explanations are rigorous and straight to the point. This book is rarely mathematical without being afraid, however, to use elementary mathematics when called for. In order to achieve this, a large number of detailed figures, specially developed for this book and found nowhere else, convey insights that otherwise might either be inaccessible or need lengthy and difficult-to-follow explanations.After Exploring the Invisible Universe, a reader will have a deeper insight into our current understanding of the foundations of Nature and be able to answer all the questions above and then some. To understand Nature and the cutting edge ideas of contemporary physics, this is the book to have.