This book provides the most recent understanding about climate change and its effects on agriculture in India. Further in-depth research is showcased regarding important allied sectors such as horticulture and fisheries, and examines the effect of climate change on different cereal crops. The individual chapters discuss the different mitigation strategies for climate change impacts and detail abiotic and biotic stresses in relation to climate change. The book provides an insight into environmentally safe and modern technologies approaches such as nanotechnology and utilization of underutilized crops under a changing climate. This book provides a solid foundation for the discussion of climate resilience in agricultural systems and the requirements to keep improving agricultural production. This book is an excellent resource for researchers, instructors, students in agriculture, horticulture and environmental science.
Climate change will lead to many changes in global development and security especially energy, water, food, society, job, diplomacy, culture, economy and trade. The Intergovernmental Panel on Climate Change (IPCC) defines climate change as: “Any change in climate over time, whether due to natural variability or as a result of human activity.” Global climate change has emerged as a key issue in both political and economic arenas. It is an increasingly questioned phenomenon, and progressive national governments around the world have started taking action to respond to these environmental concerns. This book discusses the issue of food and water security in India under the context of climate change. It provides information to scientists and local government to help them better understand the particularities of the local climate. It offers insight into the changes to natural ecosystems which have affected the local Indian population. Climate change is one of the biggest challenges to Indian society. It can lead to serious impacts on production, life and the environment. Higher temperatures and sea level rise can lead to flooding and cause water salinity problems which bring about negative effects on agriculture and high risks to industry and socio-economic systems in the future.
CLIMATE IMPACTS ON SUSTAINABLE NATURAL RESOURCE MANAGEMENT Climate change has emerged as one of the predominant global concerns of the 21st century. Statistics show that the average surface temperature of the Earth has increased by about 1.18°C since the late 19th century and the sea levels are rising due to the melting of glaciers. Further rise in the global temperature will have dire consequences for the survival of humans on the planet Earth. There is a need to monitor climatic data and associated drivers of changes to develop sustainable planning. The anthropogenic activities that are linked to climate change need scientific evaluation and must be curtailed before it is too late. This book contributes significantly in the field of sustainable natural resource management linked to climate change. Up to date research findings from developing and developed countries like India, Indonesia, Japan, Malaysia, Sri Lanka and the USA have been presented through selected case studies covering different thematic areas. The book has been organised into six major themes of sustainable natural resource management, determinants of forest productivity, agriculture and climate change, water resource management and riverine health, climate change threat on natural resources, and linkages between natural resources and biotic-abiotic stressors to develop the concept and to present the findings in a way that is useful for a wide range of readers. While the range of applications and innovative techniques is constantly increasing, this book provides a summary of findings to provide the updated information. This book will be of interest to researchers and practitioners in the field of environmental sciences, remote sensing, geographical information system, meteorology, sociology and policy studies related to natural resource management and climate change.
This Food Policy Report presents research results that quantify the climate-change impacts mentioned above, assesses the consequences for food security, and estimates the investments that would offset the negative consequences for human well-being.
Ending poverty and stabilizing climate change will be two unprecedented global achievements and two major steps toward sustainable development. But the two objectives cannot be considered in isolation: they need to be jointly tackled through an integrated strategy. This report brings together those two objectives and explores how they can more easily be achieved if considered together. It examines the potential impact of climate change and climate policies on poverty reduction. It also provides guidance on how to create a “win-win†? situation so that climate change policies contribute to poverty reduction and poverty-reduction policies contribute to climate change mitigation and resilience building. The key finding of the report is that climate change represents a significant obstacle to the sustained eradication of poverty, but future impacts on poverty are determined by policy choices: rapid, inclusive, and climate-informed development can prevent most short-term impacts whereas immediate pro-poor, emissions-reduction policies can drastically limit long-term ones.
This book addresses an important topic of food security in South Asia with specific reference to climate change. Of the 1 billion food insecure people in the world, more than 30% are in South Asia. The problem of food insecurity may be exacerbated by the projected climate change especially because of the water scarcity caused by rapid melting of the glaciers in the Himalayas and increase in variability in monsoonal rains and frequency of extreme events. Furthermore, large populations of Bangladesh and other coastal regions may be displaced by sea level rise. Thus, this volume addresses recommended land use and soil/water/crop/vegetation management practices which would enable land managers to adapt to climate disruption by enhancing soil/ecosystem/social resilience. In addition to biophysical factors, this book also addresses the issues related to human dimensions including social, ethnical and political considerations.
This book addresses in detail multifaceted approaches to boosting nutrient use efficiency (NUE) that are modified by plant interactions with environmental variables and combine physiological, microbial, biotechnological and agronomic aspects. Conveying an in-depth understanding of the topic will spark the development of new cultivars and strains to induce NUE, coupled with best management practices that will immensely benefit agricultural systems, safeguarding their soil, water, and air quality. Written by recognized experts in the field, the book is intended to provide students, scientists and policymakers with essential insights into holistic approaches to NUE, as well as an overview of some successful case studies. In the present understanding of agriculture, NUE represents a question of process optimization in response to the increasing fragility of our natural resources base and threats to food grain security across the globe. Further improving nutrient use efficiency is a prerequisite to reducing production costs, expanding crop acreage into non-competitive marginal lands with low nutrient resources, and preventing environmental contamination. The nutrients most commonly limiting plant growth are N, P, K, S and micronutrients like Fe, Zn, B and Mo. NUE depends on the ability to efficiently take up the nutrient from the soil, but also on transport, storage, mobilization, usage within the plant and the environment. A number of approaches can help us to understand NUE as a whole. One involves adopting best crop management practices that take into account root-induced rhizosphere processes, which play a pivotal role in controlling nutrient dynamics in the soil-plant-atmosphere continuum. New technologies, from basic tools like leaf color charts to sophisticated sensor-based systems and laser land leveling, can reduce the dependency on laboratory assistance and manual labor. Another approach concerns the development of crop plants through genetic manipulations that allow them to take up and assimilate nutrients more efficiently, as well as identifying processes of plant responses to nutrient deficiency stress and exploring natural genetic variation. Though only recently introduced, the ability of microbial inoculants to induce NUE is gaining in importance, as the loss, immobilization, release and availability of nutrients are mediated by soil microbial processes.
How will global warming affect developing countries, which rely heavily on agriculture as a source of economic growth? William Cline asserts that developing countries have more at risk, such as their production capacity, than industrial countries as global warming worsens. Using general circulation models, Cline boldly examines 2071–99 to forecast the effects of global warming and its economic impact into the next decade. This detailed study outlines existing studies on climate change; Cline finds the Stern Report for the UK government's estimates most reliable; estimates projected changes in temperature, precipitation, and agricultural capacity; and concludes with policy recommendations. Cline finds that agricultural production in developing countries may fall an average of 16 percent, and if global warming progresses at its current rate, India's agricultural capacity could fall as much as 40 percent. Thus, policymakers should address this phenomenon now before the world's developing countries are adversely and irreversibly affected.
This book revolves around interventions to minimize crop losses due to global warming and climate change across the Country. In that respect, the contributions emerged based on research findings from different parts of the Country in the ICAR and SAUs system are noteworthy, unique and innovative.