Classical Physics of Matter explores the properties of matter that can be explained more or less directly in terms of classical physics. Among the topics discussed are the principles of flight and the operation of engines and refrigerators. The discussion introduces ideas such as temperature, heat, and entropy that will take you beyond Newtonian mechanics and into the realm of thermodynamics and statistical physics.
Rigorous, concise, and provocative monograph analyzes the ancient concept of mass, the neoplatonic concept of inertia, the modern concept of mass, mass and energy, and much more. 1964 edition.
Classical Dynamics of Particles and Systems presents a modern and reasonably complete account of the classical mechanics of particles, systems of particles, and rigid bodies for physics students at the advanced undergraduate level. The book aims to present a modern treatment of classical mechanical systems in such a way that the transition to the quantum theory of physics can be made with the least possible difficulty; to acquaint the student with new mathematical techniques and provide sufficient practice in solving problems; and to impart to the student some degree of sophistication in handling both the formalism of the theory and the operational technique of problem solving. Vector methods are developed in the first two chapters and are used throughout the book. Other chapters cover the fundamentals of Newtonian mechanics, the special theory of relativity, gravitational attraction and potentials, oscillatory motion, Lagrangian and Hamiltonian dynamics, central-force motion, two-particle collisions, and the wave equation.
A groundbreaking text and reference book on twenty-first-century classical physics and its applications This first-year graduate-level text and reference book covers the fundamental concepts and twenty-first-century applications of six major areas of classical physics that every masters- or PhD-level physicist should be exposed to, but often isn't: statistical physics, optics (waves of all sorts), elastodynamics, fluid mechanics, plasma physics, and special and general relativity and cosmology. Growing out of a full-year course that the eminent researchers Kip Thorne and Roger Blandford taught at Caltech for almost three decades, this book is designed to broaden the training of physicists. Its six main topical sections are also designed so they can be used in separate courses, and the book provides an invaluable reference for researchers. Presents all the major fields of classical physics except three prerequisites: classical mechanics, electromagnetism, and elementary thermodynamics Elucidates the interconnections between diverse fields and explains their shared concepts and tools Focuses on fundamental concepts and modern, real-world applications Takes applications from fundamental, experimental, and applied physics; astrophysics and cosmology; geophysics, oceanography, and meteorology; biophysics and chemical physics; engineering and optical science and technology; and information science and technology Emphasizes the quantum roots of classical physics and how to use quantum techniques to elucidate classical concepts or simplify classical calculations Features hundreds of color figures, some five hundred exercises, extensive cross-references, and a detailed index An online illustration package is available
Applications not usually taught in physics courses include theory of space-charge limited currents, atmospheric drag, motion of meteoritic dust, variational principles in rocket motion, transfer functions, much more. 1960 edition.
This textbook is specifically designed to meet the needs of students taking the two-semester calculus-based introductory physics courses now favored in many countries around the world. Accordingly, it is more concise than the extremely long standard textbooks, but offers the same modern approach and format. All core topics in classical physics are covered using straightforward language, including mechanics, thermodynamics, electromagnetism, and optics. The necessary mathematics is developed along the way, rigorously and clearly. The book also features a wealth of solved examples, which will deepen readers’ conceptual comprehension and hone their problem-solving skills. In addition, some 430 problems and 400 multiple-choice questions serve to review key concepts and assess readers’ progress. The material in the book has been successfully employed in classroom teaching for the past decade, during which time it has been successively refined. Given its scope, format and approach, the book is the ideal choice for all science, engineering, and medical students embarking on an introductory physics course.
Intended for advanced undergraduates and beginning graduate students, this text is based on the highly successful course given by Walter Greiner at the University of Frankfurt, Germany. The two volumes on classical mechanics provide not only a complete survey of the topic but also an enormous number of worked examples and problems to show students clearly how to apply the abstract principles to realistic problems.