Covering all of the most famous types in service with airlines around the world, this book provides a broad overview of today's civil aviation world. From small business jets to charter and scheduled workhorses this book profiles each type in detail.
The perfect guide for spotters and enthusiasts interested in airliners, feederliners, executive jets, light aircraft and other commercial aeroplanes. Contains 3-view silhouettes, colour photographs, dimensions, technical specifications and a potted history of those aircraft most likely to be seen in the skies and at airports. Other helpful details are included to make aircraft identification more certain.
There is an increasing emphasis in aeronautical engineering on design. Concentrating on large scale commercial jet aircraft, this textbook reflects areas of growth in the aircraft industry and the procedures and practices of civil aviation design.
Although the overall appearance of modern airliners has not changed a lot since the introduction of jetliners in the 1950s, their safety, efficiency and environmental friendliness have improved considerably. Main contributors to this have been gas turbine engine technology, advanced materials, computational aerodynamics, advanced structural analysis and on-board systems. Since aircraft design became a highly multidisciplinary activity, the development of multidisciplinary optimization (MDO) has become a popular new discipline. Despite this, the application of MDO during the conceptual design phase is not yet widespread. Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes presents a quasi-analytical optimization approach based on a concise set of sizing equations. Objectives are aerodynamic efficiency, mission fuel, empty weight and maximum takeoff weight. Independent design variables studied include design cruise altitude, wing area and span and thrust or power loading. Principal features of integrated concepts such as the blended wing and body and highly non-planar wings are also covered. The quasi-analytical approach enables designers to compare the results of high-fidelity MDO optimization with lower-fidelity methods which need far less computational effort. Another advantage to this approach is that it can provide answers to “what if” questions rapidly and with little computational cost. Key features: Presents a new fundamental vision on conceptual airplane design optimization Provides an overview of advanced technologies for propulsion and reducing aerodynamic drag Offers insight into the derivation of design sensitivity information Emphasizes design based on first principles Considers pros and cons of innovative configurations Reconsiders optimum cruise performance at transonic Mach numbers Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes advances understanding of the initial optimization of civil airplanes and is a must-have reference for aerospace engineering students, applied researchers, aircraft design engineers and analysts.
Civil Aircraft Electrical Power System Safety Assessment: Issues and Practices provides guidelines and methods for conducting a safety assessment process on civil airborne systems and equipment. As civil aircraft electrical systems become more complicated, electrical wiring failures have become a huge concern in industry and government—especially on aging platforms. There have been several accidents (most recently battery problems on the Boeing 777) with some of these having a relationship to wiring and power generation. Featuring a case study on the continuous safety assessment process of the civil airborne electrical power system, this book addresses problems, issues and troubleshooting techniques such as single event effects (SEE), the failure effects of electrical wiring interconnection systems (EWIS), formal theories and safety analysis methods in civil aircrafts. - Introduces how to conduct assignment of development assurance levels for the electrical power system - Includes safety assessments of aging platforms and their respective Electrical Wiring Interconnection System (EWIS) - Features material on failure mechanisms for wiring systems and discussion of Failure Modes and Effects Analysis (FMEA) sustainment
As part of the national effort to improve aviation safety, the Federal Aviation Administration (FAA) chartered the National Research Council to examine and recommend improvements in the aircraft certification process currently used by the FAA, manufacturers, and operators.
This publication provides safety information and guidance to those involved in the certification, operation, and maintenance of high-performance former military aircraft to help assess and mitigate safety hazards and risk factors for the aircraft within the context provided by Title 49 United States Code (49 U.S.C.) and Title 14 Code of Federal Regulations (14 CFR), and associated FAA policies. Specific models include: A-37 Dragonfly, A-4 Skyhawk, F-86 Sabre, F-100 Super Sabre, F-104 Starfighter, OV-1 Mohawk, T-2 Buckeye, T-33 Shooting Star, T-38 Talon, Alpha Jet, BAC 167 Strikemaster, Hawker Hunter, L-39 Albatros, MB-326, MB-339, ME-262, MiG-17 Fresco, MiG-21 Fishbed, MiG-23 Flogger, MiG-29 Fulcrum, S-211. DISTRIBUTION: Unclassified; Publicly Available; Unlimited. COPYRIGHT: Graphic sources: Contains materials copyrighted by other individuals. Copyrighted materials are used with permission. Permission granted for this document only. Where applicable, the proper license(s) (i.e., GFD) or use requirements (i.e., citation only) are applied.