This book introduces 5 key feeding techniques such as coaxial probe, microstrip, conformal strip, aperture, and coplanar waveguide and covers different shapes of dielectric resonator antennas leading to improvement in circularly polarized (CP) performance. It introduces advancements in the field of dielectric resonator antennas and dilectric resonator antennas (DRAs). Five different types of feeding techniques (i.e. coaxial probe, microstrip, conformal strip, aperture, and coplanar waveguide) are described for obtaining CP followed by two modified shaped DRA (sector DRAs). Throughout this book, rectangular and circular with their modified shapes of the dielectric resonator are utilized, providing differing degrees of freedom as well as different variable parameters, including length, width, height, radius, aspect ratio and dielectric constant, which are tuned to obtain the desired antenna parameters.
This book introduces 5 key feeding techniques such as coaxial probe, microstrip, conformal strip, aperture, and coplanar waveguide and covers different shapes of dielectric resonator antennas leading to improvement in circularly polarized (CP) performance. It introduces advancements in the field of dielectric resonator antennas and dilectric resonator antennas (DRAs). Five different types of feeding techniques (i.e. coaxial probe, microstrip, conformal strip, aperture, and coplanar waveguide) are described for obtaining CP followed by two modified shaped DRA (sector DRAs). Throughout this book, rectangular and circular with their modified shapes of the dielectric resonator are utilized, providing differing degrees of freedom as well as different variable parameters, including length, width, height, radius, aspect ratio and dielectric constant, which are tuned to obtain the desired antenna parameters.
This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Advanced designs such as small-size CP antennas, broadband, wideband and ultra-wideband CP antennas are also discussed, as well as multi-band CP antennas and dual CP antennas. The design and analysis of different types of CP array antennas such as broadband CP patch arrays, dual-band CP arrays, CP printed slot arrays, single-band and multi-band CP reflectarrays, high-gain CP waveguide slot antennas, CP dielectric resonator antenna arrays, CP active arrays, millimetre-waveband CP arrays in LTCC, and CP arrays with electronically beam-switching or beam-steering capabilities are described in detail. Case studies are provided to illustrate the design and implementation of CP antennas in practical scenarios such as dual-band Global Navigation Satellite Systems (GNSS) receivers, satellite communication mobile terminals at the S-band, Radio Frequency Identification (RFID) readers at 2.4 GHz, and Ka-band high-speed satellite communication applications. It also includes the detailed designs for a wideband Logarithmic spiral antenna that can operate from 3.4-7.7 GHz. In addition, the book offers a detailed review of the recent developments of different types of CP antennas and arrays. Presents comprehensive discussions of design techniques for different types of CP antennas: small-size CP antennas, broadband CP antennas, multi-band CP antennas and CP arrays. Covers a wide range of antenna technologies such as microstrip antennas, helix, quadrifilar helix antenna, printed quadrifilar helix antenna, dielectric resonator antennas, printed slots, spiral antennas, monopoles, waveguide slot arrays, reflectarrays, active arrays, millimetre-wave arrays in LTCC, electronically beam-switching arrays and electronically beam-steerable arrays. Reviews recent developments in different types of CP antennas and arrays, reported by industries, researchers and academics worldwide. Includes numerous case studies to demonstrate how to design and implement different CP antennas in practical scenarios. Provides both an introduction for students in the field and an in-depth reference for antenna/RF engineers who work on the development of CP antennas. Circularly Polarized Antennas will be an invaluable guide for researchers in R&D organizations; system engineers (antenna, telecom, space and satellite); postgraduates studying the subjects of antenna and propagation, electromagnetics, RF/microwave/millimetre-wave systems, satellite communications and so on; technical managers and professionals in the areas of antennas and propagation.
The use of dielectric resonator as a resonant antenna was proposed in 1983. Due to the absence of metallic loss, the dielectric resonator antenna (DRA) is highly efficient when operated at millimetre wave frequencies. With the use of high dielectric constant material, the DRA can also be used as a small and low profile antenna operated at low microwave frequencies. Low cost dielectric materials are now easily available commercially, encouraging more antenna engineers to design communication systems with DRAs.
This book covers resonating modes inside device and gives insights into antenna design, impedance and radiation patterns. It discusses how higher-order modes generation and control impact bandwidth and antenna gain. The text covers new approaches in antenna design by investigation hybrid modes, H_Z and E_Z fields available simultaneously, and analysis and modelling on modes with practical applications in antenna design. The book will be prove useful to students, researchers and professionals alike.
Today, more and more antenna engineers are viewing the Dielectric Resonator Antenna (DRA) as a preferable alternative to conventional low-gain designs because of several attractive features, including high radiation, light weight, small size and low profile. This practical resource presents complete, up-to-date details on DRAs in a single volume. The book provides professionals with clear guidance on the mode of operation and radiation behavior of DRAs, the main methods of excitation, and the major advances in DRA technology. This hands-on reference equips engineers with simple equations and graphs that help them rapidly design DRAs, without the need for complex analytical or numerical calculations. Numerous design examples are included to give practitioners a sense of the versatility that DRAs afford.
This book focuses on the understanding of the Cylindrical Dielectric Resonator Antennas (CDRA). The book introduces the fundamentals of DRA, CDRA, identifying the modes in a CDRA, excitation techniques and recent advancements pertaining to the research of the CDRAs. The latest trends in the field are discussed, including wide bandwidth of operation, high gain, modal stability, mode and impedance matching techniques, Circularly Polarized CDRAs, beam forming and MIMO applications for modern wireless systems. The experimental validation, testing, fabrication methods and machining to achieve cylindrical and its reformed shapes are also presented.
We are always surrounded by electromagnetic waves and fields of various spectra. This book explains basic electromagnetic theory with the help of design formulations i.e. mathematical background on antennas along with experimentations, which has made this book unique. The main purpose of this book is to embed mathematical EM theory of dielectric resonator antennas with experimental validation so that understanding of concepts takes place. Initially, basic understanding of philosophy of dielectric resonators has been discussed, then it is supported with mathematical modeling and later same is implemented with its prototype model along with experimentations. The modes theory gives important analysis on currents distribution, impedance analysis and radiation pattern in DRA. Circular polarization can built signal robustness, case studies on circular polarization has been included. Equivalent RLC circuit concept has been introduced. Challenges of switching from microwave to terahertz has been briefly discussed. Nano DRA will revolutionize the wireless technology. Nano DRA ,Terahertz DRA and Quantum DRA have analyzed and studied.
Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems The first and only comprehensive text on substrate-integrated mmW antenna technology, state-of-the-art antenna design, and emerging wireless applications Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems elaborates the most important topics related to revolutionary millimeter-wave (mmW) technology. Following a clear description of fundamental concepts including substrate-integrated waveguides and loss analysis, the text treats key design methods, prototyping techniques, and experimental setup and testing. The authors also highlight applications of mmW antennas in 5G wireless communication and next-generation radar systems. Readers are prepared to put techniques into practice through practical discussions of how to set up testing for impedance matching, radiation patterns, gain from 24GHz up to 325 GHz, and more. This book will bring readers state-of-the-art designs and recent progress in substrate-integrated mmW antennas for emerging wireless applications. Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems is the first comprehensive text on the topic, allowing readers to quickly master mmW technology. This book: Introduces basic concepts such as metamaterials Huygens's surface, zero-index structures, and pattern synthesis Describes prototyping in the form of fabrication based on printed-circuit-board, low-temperature-co-fired-ceramic and micromachining Explores applications for next-generation radar and imaging systems such as 24-GHz and 77-GHz vehicular radar systems Elaborates design methods including waveguide-based feeding network, three-dimensional feeding structure, dielectric loaded aperture antenna element, and low-sidelobe synthesis The mmW is one of today’s most important emerging technologies. This book provides graduate students, researchers, and engineers with the knowledge they need to deploy mmW systems and develop new antenna designs with low cost, low loss, and low complexity.