Chemoattractant Ligands and Their Receptors succinctly summarizes cutting-edge research in the important area of chemoattraction in immunology. It explains how chemoattractant molecules mobilize immune cells to ward off attack by invading pathogens, both at a molecular and at a cellular level. Written by acknowledged experts in the field, it contains detailed molecular and structural information on each of the major chemoattractants and their receptors. Its unique multidisciplinary approach encompasses biology, immunology, protein chemistry, and molecular biology. A time-saving reference for both researchers and students.
Chemoattractant Ligands and Their Receptors succinctly summarizes cutting-edge research in the important area of chemoattraction in immunology. It explains how chemoattractant molecules mobilize immune cells to ward off attack by invading pathogens, both at a molecular and at a cellular level. Written by acknowledged experts in the field, it contains detailed molecular and structural information on each of the major chemoattractants and their receptors. Its unique multidisciplinary approach encompasses biology, immunology, protein chemistry, and molecular biology. A time-saving reference for both researchers and students.
The fourth edition of The Cytokine Handbook provides an encyclopedic coverage of the molecules that induce and regulate immune responses. Expanded to two volumes, the scope of the book has been broadened to include a major emphasis on the clinical applications of cytokines. The early chapters discuss individual cytokines, chemokines and receptors. Additional chapters discuss the clinical implications and applications of cytokines, including cytokine gene transfer, antisense therapy and assay systems.
Over the last decade, cytokine research has emerged as one of the most exciting and critical fields for providing fundamental knowledge of normal and abnormal human development. Today, it is apparent that cytokines orchestrate growth from the early embryonic stage to maturity and are responsible for the normal function of virtually every organ system. Furthermore, virtually all disease states have been associated, at least in part, with cytokine aberrations. In this volume, the editors have brought together internationally known experts in the field of interleukin research to provide a comprehensive review of the biology of the interleukins and their role in both health and illness, while maintaining a balance between the basic science and clinical aspects. Cytokines: Interleukins and their Receptors should be of interest to a wide variety of researchers including clinical hematologists, oncologists, immunologists, in addition to medical and PhD students and researchers with an interest in cytokines.
This comprehensive encyclopedic reference provides rapid access to focused information on topics of cancer research for clinicians, research scientists and advanced students. Given the overwhelming success of the first edition, which appeared in 2001, and fast development in the different fields of cancer research, it has been decided to publish a second fully revised and expanded edition. With an A-Z format of over 7,000 entries, more than 1,000 contributing authors provide a complete reference to cancer. The merging of different basic and clinical scientific disciplines towards the common goal of fighting cancer makes such a comprehensive reference source all the more timely.
The microcirculation is highly responsive to, and a vital participant in, the inflammatory response. All segments of the microvasculature (arterioles, capillaries, and venules) exhibit characteristic phenotypic changes during inflammation that appear to be directed toward enhancing the delivery of inflammatory cells to the injured/infected tissue, isolating the region from healthy tissue and the systemic circulation, and setting the stage for tissue repair and regeneration. The best characterized responses of the microcirculation to inflammation include impaired vasomotor function, reduced capillary perfusion, adhesion of leukocytes and platelets, activation of the coagulation cascade, and enhanced thrombosis, increased vascular permeability, and an increase in the rate of proliferation of blood and lymphatic vessels. A variety of cells that normally circulate in blood (leukocytes, platelets) or reside within the vessel wall (endothelial cells, pericytes) or in the perivascular space (mast cells, macrophages) are activated in response to inflammation. The activation products and chemical mediators released from these cells act through different well-characterized signaling pathways to induce the phenotypic changes in microvessel function that accompany inflammation. Drugs that target a specific microvascular response to inflammation, such as leukocyte-endothelial cell adhesion or angiogenesis, have shown promise in both the preclinical and clinical studies of inflammatory disease. Future research efforts in this area will likely identify new avenues for therapeutic intervention in inflammation. Table of Contents: Introduction / Historical Perspectives / Anatomical Considerations / Impaired Vasomotor Responses / Capillary Perfusion / Angiogenesis / Leukocyte-Endothelial Cell Adhesion / Platelet-Vessel Wall Interactions / Coagulation and Thrombosis / Endothelial Barrier Dysfunction / Epilogue / References
Microbiorobotics is a new engineering discipline that inherently involves a multidisciplinary approach (mechanical engineering, cellular biology, mathematical modeling, control systems, synthetic biology, etc). Building robotics system in the micro scale is an engineering task that has resulted in many important applications, ranging from micromanufacturing techniques to cellular manipulation. However, it is also a very challenging engineering task. One of the reasons is because many engineering ideas and principles that are used in larger scales do not scale well to the micro-scale. For example, locomotion principles in a fluid do not function in the same way, and the use of rotational motors is impractical because of the difficulty of building of the required components. Microrobotics is an area that is acknowledged to have massive potential in applications from medicine to manufacturing. This book introduces an inter-disciplinary readership to the toolkit that micro-organisms offer to micro-engineering The design of robots, sensors and actuators faces a range of techology challenges at the micro-scale. This book shows how biological techniques and materials can be used to meet these challenges World-class multi-disciplanry editors and contributors leverage insights from engineering, mathematical modeling and the life sciences – creating a novel toolkit for microrobotics
This volume, new to The Receptors series, focuses on several areas, including the birth, maturation, and structure of Chemokines; Neutrophil, Dendritic, and Lymphocyte trafficking; and Chemokine Receptors in diseases such as AIDs and lung cancer. In particular the book contains cutting-edge information ranging from basic molecular and cellular mechanisms to physiological and pathological roles of chemokines.
The Janeway's Immunobiology CD-ROM, Immunobiology Interactive, is included with each book, and can be purchased separately. It contains animations and videos with voiceover narration, as well as the figures from the text for presentation purposes.