Annual cotton production exceeds 25 million metric tons and accounts for more than 40 percent of the textile fiber consumed worldwide. A key textile fiber for over 5000 years, this complex carbohydrate is also one of the leading crops to benefit from genetic engineering. Cotton Fiber Chemistry and Technology offers a modern examination of co
This fifth volume abridgement of Joseph Needham's monumental work is concerned with the staggering civil engineering feats made in early and medieval China.
Textile chemical processing today, particularly the pre-treatment processes require a highly sophisticated technology and engineering to achieve the well known concepts of "Right first time, Right everytime and Right on time" processing and production. Chemical pre-treatment may be broadly defined as a procedure mainly concerned with the removal of natural as well as added impurities in fabric to a level necessary for good whiteness and absorbency by utilising minimum time, energy and chemicals as well as water. This book discusses the fundamental aspects of chemistry, chemical technology and machineries involved in the various pre-treatment process of textiles before subsequent dyeing, printing and finishing. With the introduction of newer fibres, specialty chemicals, improved technology and sophisticated machineries developed during the last decade, this book fills a gap in this area of technology. However, its real strength is its clear perception of ample background description, which will enable readers to understand most current journals, thus staying abreast of the latest advances in the field.
The Impact and Prospects of Green Chemistry for Textile Technology provides a review and summary of the role of green chemistry in textiles, including the use of green agents and sustainable technologies in different textile applications. The book systematically covers the history and chemistry of eco-friendly colorants, chitin, chitosan, cyclodextrin, biomordants, antimicrobial, UV protective, flame retardant, insect repellant textiles, and advanced pre- and post- treatment technologies, such as the sonochemistry and plasma methods currently employed in functional modifications. The book also pays attention to the remediation of textile effluents using novel, sustainable and inexpensive adsorbents. Written by high profile contributors with many years of experience in textile technology, the book gives engineers and materials scientists in the textile industry the information they need to effectively deploy these green technologies and processes. - Introduces green chemistry and sustainable technologies, and explores their role in different textile applications - Examines the use of renewable materials, such as biopolymers, dyes and pigments, biomordants, polyphenols and plant extracts in functional finishing applications - Deals the functional modification of textiles using state-of-the-art biotechnology and nanotechnology
A giant in the field and at times a polarizing figure, F. Albert Cotton's contributions to inorganic chemistry and the area of transitions metals are substantial and undeniable. In his own words, My Life in the Golden Age of Chemistry: More Fun than Fun describes the late chemist's early life and college years in Philadelphia, his graduate training and research contributions at Harvard with Geoffrey Wilkinson, and his academic career from becoming the youngest ever full professor at MIT (aged 31) to his extensive time at Texas A&M. Professor Cotton's autobiography offers his unique perspective on the advances he and his contemporaries achieved through one of the most prolific times in modern inorganic chemistry, in research on the then-emerging field of organometallic chemistry, metallocenes, multiple bonding between transition metal atoms, NMR and ESR spectroscopy, hapticity, and more. Working during a time of generous government funding of science and strong sponsorship for good research, Professor Cotton's experience and observations provide insight into this prolific and exciting period of chemistry. - Offers personal and often wry perspective from this prominent chemist and recipient of some of science's highest honors: the U.S. National Medal of Science (1982), the Priestley Medal (the American Chemical Society's highest recognition, 1998), membership in the U. S. National Academy of Sciences and corresponding international bodies, and 29 honorary doctorates - Details the background behind the development and emergence of groundbreaking research in organometallic chemistry and transition metals - Provides beautifully-written and engaging insight into a "Golden Age of Chemistry" and the work of historically renowned chemists
Textiles are ubiquitous materials that many of us take for granted in our everyday lives. We rely on our clothes to protect us from the environment and use them to enhance our appearance. Textiles also find applications in transport, healthcare, construction, and many other industries. The revised and updated 2nd Edition of The Chemistry of Textile Fibres highlights the trend towards the synthesis, from renewable resources, of monomers for making synthetic fibres. It contains new information on the influence of legislation and the concerns of environmental organisations on the use of chemicals in the textile industry. New sections on genetically modified cotton, anti-microbial materials and spider silk have been added as well as a new chapter covering functional fibres and fabrics. This book provides a comprehensive overview of the various types of textile fibres that are available today, ranging from natural fibres to the high-performance fibres that are very technologically advanced. Readers will gain an appreciation of why particular types of fibre are used for certain applications through understanding the chemistry behind their properties. Students following ‘A’ level courses or equivalent and first-year undergraduate students reading textile technology subjects at university will find this book a valuable source of information.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field./div Chapters "Sonocatalysis: A Potential Sustainable Pathway for the Valorization of Lignocellulosic Biomass and Derivatives", "Valorisation of Biowastes for the Production of Green Materials Using Chemical Methods" and "Green and Sustainable Separation of Natural Products from Agro-Industrial Waste: Challenges, Potentialities, and Perspectives on Emerging Approaches" are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
The production of textile materials comprises a very large and complex global industry that utilises a diverse range of fibre types and creates a variety of textile products. As the great majority of such products are coloured, predominantly using aqueous dyeing processes, the coloration of textiles is a large-scale global business in which complex procedures are used to apply different types of dye to the various types of textile material. The development of such dyeing processes is the result of substantial research activity, undertaken over many decades, into the physico-chemical aspects of dye adsorption and the establishment of ‘dyeing theory’, which seeks to describe the mechanism by which dyes interact with textile fibres. Physico-Chemical Aspects of Textile Coloration provides a comprehensive treatment of the physical chemistry involved in the dyeing of the major types of natural, man-made and synthetic fibres with the principal types of dye. The book covers: fundamental aspects of the physical and chemical structure of both fibres and dyes, together with the structure and properties of water, in relation to dyeing; dyeing as an area of study as well as the terminology employed in dyeing technology and science; contemporary views of intermolecular forces and the nature of the interactions that can occur between dyes and fibres at a molecular level; fundamental principles involved in dyeing theory, as represented by the thermodynamics and kinetics of dye sorption; detailed accounts of the mechanism of dyeing that applies to cotton (and other cellulosic fibres), polyester, polyamide, wool, polyacrylonitrile and silk fibres; non-aqueous dyeing, as represented by the use of air, organic solvents and supercritical CO2 fluid as alternatives to water as application medium. The up-to-date text is supported by a large number of tables, figures and illustrations as well as footnotes and widespread use of references to published work. The book is essential reading for students, teachers, researchers and professionals involved in textile coloration.