Periodic Operation of Chemical Reactors

Periodic Operation of Chemical Reactors

Author: P. L. Silveston

Publisher: Butterworth-Heinemann

Published: 2012-12-04

Total Pages: 793

ISBN-13: 0123918669

DOWNLOAD EBOOK

This comprehensive review, prepared by 24 experts, many of whom are pioneers of the subject, brings together in one place over 40 years of research in this unique publication. This book will assist R & D specialists, research chemists, chemical engineers or process managers harnessing periodic operations to improve their process plant performance. Periodic Operation of Reactors covers process fundamentals, research equipment and methods and provides "the state of the art" for the periodic operation of many industrially important catalytic reactions. Emphasis is on experimental results, modeling and simulation. Combined reaction and separation are dealt with, including simulated moving bed chromatographic, pressure and temperature swing and circulating bed reactors. Thus, Periodic Operation of Reactors offers readers a single comprehensive source for the broad and diverse new subject. This exciting new publication is a "must have" for any professional working in chemical process research and development. - A comprehensive reference on the fundamentals, development and applications of periodic operation - Contributors and editors include the pioneers of the subject as well as the leading researchers in the field - Covers both fundamentals and the state of the art for each operation scenario, and brings all types of periodic operation together in a single volume - Discussion is focused on experimental results rather than theoretical ones; provides a rich source of experimental data, plus process models - Accompanying website with modelling data


Chemical Reactor Design

Chemical Reactor Design

Author: Juan A. Conesa

Publisher: John Wiley & Sons

Published: 2019-12-04

Total Pages: 350

ISBN-13: 3527346309

DOWNLOAD EBOOK

A guide to the technical and calculation problems of chemical reactor analysis, scale-up, catalytic and biochemical reactor design Chemical Reactor Design offers a guide to the myriad aspects of reactor design including the use of numerical methods for solving engineering problems. The author - a noted expert on the topic - explores the use of transfer functions to study residence time distributions, convolution and deconvolution curves for reactor characterization, forced-unsteady-state-operation, scale-up of chemical reactors, industrial catalysis, design of multiphasic reactors, biochemical reactors design, as well as the design of multiphase gas-liquid-solid reactors. Chemical Reactor Design contains several examples of calculations and it gives special emphasis on the numerical solutions of differential equations by using the finite differences approximation, which offers the background information for understanding other more complex methods. The book is designed for the chemical engineering academic community and includes case studies on mathematical modeling by using of MatLab software. This important book: - Offers an up-to-date insight into the most important developments in the field of chemical, catalytic, and biochemical reactor engineering - Contains new aspects such as the use of numerical methods for solving engineering problems, transfer functions to study residence time distributions, and more - Includes illustrative case studies on MatLab approach, with emphasis on numerical solution of differential equations using the finite differences approximation Written for chemical engineers, mechanical engineers, chemists in industry, complex chemists, bioengineers, and process engineers, Chemical Reactor Design addresses the technical and calculation problems of chemical reactor analysis, scale-up, as well as catalytic and biochemical reactor design.


Chemical Reactor Design and Control

Chemical Reactor Design and Control

Author: William L. Luyben

Publisher: John Wiley & Sons

Published: 2007-07-16

Total Pages: 425

ISBN-13: 0470134909

DOWNLOAD EBOOK

Chemical Reactor Design and Control uses process simulators like Matlab®, Aspen Plus, and Aspen Dynamics to study the design of chemical reactors and their dynamic control. There are numerous books that focus on steady-state reactor design. There are no books that consider practical control systems for real industrial reactors. This unique reference addresses the simultaneous design and control of chemical reactors. After a discussion of reactor basics, it: Covers three types of classical reactors: continuous stirred tank (CSTR), batch, and tubular plug flow Emphasizes temperature control and the critical impact of steady-state design on the dynamics and stability of reactors Covers chemical reactors and control problems in a plantwide environment Incorporates numerous tables and shows step-by-step calculations with equations Discusses how to use process simulators to address diverse issues and types of operations This is a practical reference for chemical engineering professionals in the process industries, professionals who work with chemical reactors, and students in undergraduate and graduate reactor design, process control, and plant design courses.


Chemical Reactions and Chemical Reactors

Chemical Reactions and Chemical Reactors

Author: George W. Roberts

Publisher: John Wiley & Sons

Published: 2008-03-14

Total Pages: 483

ISBN-13: 0471742201

DOWNLOAD EBOOK

Focused on the undergraduate audience, Chemical Reaction Engineering provides students with complete coverage of the fundamentals, including in-depth coverage of chemical kinetics. By introducing heterogeneous catalysis early in the book, the text gives students the knowledge they need to solve real chemistry and industrial problems. An emphasis on problem-solving and numerical techniques ensures students learn and practice the skills they will need later on, whether for industry or graduate work.


Chemical Reactor Modeling

Chemical Reactor Modeling

Author: Hugo A. Jakobsen

Publisher: Springer Science & Business Media

Published: 2014-04-02

Total Pages: 1589

ISBN-13: 3319050923

DOWNLOAD EBOOK

Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics. The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling and in a post graduate course in modern reactor modeling at the Norwegian University of Science and Technology, Department of Chemical Engineering, Trondheim, Norway. The objective of the book is to present the fundamentals of the single-fluid and multi-fluid models for the analysis of single and multiphase reactive flows in chemical reactors with a chemical reactor engineering rather than mathematical bias. Organized into 13 chapters, it combines theoretical aspects and practical applications and covers some of the recent research in several areas of chemical reactor engineering. This book contains a survey of the modern literature in the field of chemical reactor modeling.


Elementary Chemical Reactor Analysis

Elementary Chemical Reactor Analysis

Author: Rutherford Aris

Publisher: Butterworth-Heinemann

Published: 2013-09-03

Total Pages: 367

ISBN-13: 1483135802

DOWNLOAD EBOOK

Elementary Chemical Reactor Analysis focuses on the processes, reactions, methodologies, and approaches involved in chemical reactor analysis, including stoichiometry, adiabatic reactors, external mass transfer, and thermochemistry. The publication first takes a look at stoichiometry and thermochemistry and chemical equilibrium. Topics include heat of formation and reaction, measurement of quantity and its change by reaction, concentration changes with a single reaction, rate of generation of heat by reaction, and equilibrium of simultaneous and heterogeneous reactions. The manuscript then offers information on reaction rates and the progress of reaction in time. Discussions focus on systems of first order reactions, concurrent reactions of low order, general irreversible reaction, variation of reaction rate with extent and temperature, and heterogeneous reaction rate expressions. The book examines the interaction of chemical and physical rate processes, continuous flow stirred tank reactor, and adiabatic reactors. Concerns include multistage adiabatic reactors, adiabatic stirred tank, stability and control of the steady state, mixing in the reactor, effective reaction rate expressions, and external mass transfer. The publication is a dependable reference for readers interested in chemical reactor analysis.


The Optimal Design of Chemical Reactors

The Optimal Design of Chemical Reactors

Author: Rutherford Aris

Publisher: Elsevier

Published: 2016-06-03

Total Pages: 204

ISBN-13: 1483221431

DOWNLOAD EBOOK

Mathematics in Science and Engineering, Volume 3: The Optimal Design of Chemical Reactors: A Study in Dynamic Programming covers some of the significant problems of chemical reactor engineering from a unified point of view. This book discusses the principle of optimality in its general baring on chemical processes. Organized into nine chapters, this volume begins with an overview of the whole range of optimal problems in chemical reactor design. This text then provides the fundamental equations for reactions and reactors. Other chapters consider the objective function needed to define a realistic optimal problem and explain separately the main types of chemical reactors and their associated problems. This book discusses as well the three problems with a stochastic element. The final chapter deals with the optimal operation of existing reactors that may be regarded as partial designs in which only some of the variables can be optimally chosen. This book is a valuable resource for chemical engineers.


Modeling of Chemical Kinetics and Reactor Design

Modeling of Chemical Kinetics and Reactor Design

Author: A. Kayode Coker

Publisher: Gulf Professional Publishing

Published: 2001-07-26

Total Pages: 1132

ISBN-13: 9780884154815

DOWNLOAD EBOOK

This reference conveys a basic understanding of chemical reactor design methodologies that incorporate both control and hazard analysis. It demonstrates how to select the best reactor for any particular chemical reaction, and how to estimate its size to determine the best operating conditions.


Chemical Reactors

Chemical Reactors

Author: Pierre Trambouze

Publisher: Editions OPHRYS

Published: 2004

Total Pages: 694

ISBN-13: 9782710811244

DOWNLOAD EBOOK

This in-depth revision provides a summary of current knowledge, updated based on the most recent literature in the field. The reader will find recommendations on the choice of correlations to apply, depending on the case, and useful references to the original documents on industrial processes. This practical user's guide is designed for engineers in industries involved with the problems of chemical transformations, and for professors and students of process engineering. Whether the reader is working in a design department, an engineering firm or an R&D department, or is managing production plants, he will find material here that is directly applicable to the solution of his problems.Contents: 1. Definitions and fundamental concepts. 2. Single-phase reactors. 3. General characteristics of reactors with two fluid phases. 4. Experimental data and correlations for gas-liquid reactors. 5. Experimental data and correlations for liquid-liquid reactors. 6. General characteristics of heterogeneous catalytic reactors. 7. Reactors employing a fluid phase and a catalytic solid phase: fixed bed, moving bed, fluidized bed. 8. Three-phase reactors: gas, liquid, and catalytic solid. 9. Case studies. 10. Multifunctional reactors and future developments. General nomenclature. Index.