Focused on the undergraduate audience, Chemical Reaction Engineering provides students with complete coverage of the fundamentals, including in-depth coverage of chemical kinetics. By introducing heterogeneous catalysis early in the book, the text gives students the knowledge they need to solve real chemistry and industrial problems. An emphasis on problem-solving and numerical techniques ensures students learn and practice the skills they will need later on, whether for industry or graduate work.
Chemical Reaction and Reactor Design begins with a discussion of chemical reactions, emphasizing chemical equilibrium and rate of reaction and proceeds to the theory and practice of heat and mass transfer, and important considerations in the design of chemical reactors. The final section of the book provides detailed case studies from the chemical industry covering the six chemical processes: naphtha cracking, steam reforming, epoxy resin production, hydro-treating, fluid catalytic cracking and flue gas desulfurization. The comprehensive coverage of theories of chemical reaction and their application to reactor design provided here will be of value to chemical engineers, industrial chemists and researchers in these fields.
This comprehensive review, prepared by 24 experts, many of whom are pioneers of the subject, brings together in one place over 40 years of research in this unique publication. This book will assist R & D specialists, research chemists, chemical engineers or process managers harnessing periodic operations to improve their process plant performance. Periodic Operation of Reactors covers process fundamentals, research equipment and methods and provides "the state of the art" for the periodic operation of many industrially important catalytic reactions. Emphasis is on experimental results, modeling and simulation. Combined reaction and separation are dealt with, including simulated moving bed chromatographic, pressure and temperature swing and circulating bed reactors. Thus, Periodic Operation of Reactors offers readers a single comprehensive source for the broad and diverse new subject. This exciting new publication is a "must have" for any professional working in chemical process research and development. - A comprehensive reference on the fundamentals, development and applications of periodic operation - Contributors and editors include the pioneers of the subject as well as the leading researchers in the field - Covers both fundamentals and the state of the art for each operation scenario, and brings all types of periodic operation together in a single volume - Discussion is focused on experimental results rather than theoretical ones; provides a rich source of experimental data, plus process models - Accompanying website with modelling data
Chemical Reactor Design and Operation K. R. Westerterp, W. P. M. van Swaaij and A. A. C. M. Beenackers Chemical Reaction Engineering Laboratories, Twente University of Technology, Enschede, The Netherlands This is a comprehensive handbook on the design and operation of chemical reactors which are vital elements in every manufacturing process. The book offers an introduction to the modern literature and covers in depth the relevant theory of chemical reactors. The theory is illustrated by numerous worked examples typical to chemical reaction engineering practice in research, development, design and operation. The examples range from fine chemicals to large scale production and from water purification to metallurgical processes, commencing with simple homogenous model reactors and then moving to the complicated, multi-phase, heterogeneous reactors met with in reality. All the examples are based on the industrial experience of the authors. Much effort is dedicated to the behaviour of reactors in practice and to the capacity, yield and selectivity of the reactor. The book is thoroughly indexed and cross-referenced. This edition will be particularly useful to undergraduate and graduate students studying chemical reactors. Contents Fundamentals of chemical reactor calculations Model reactors: single reactions, isothermal single phase reactor calculations Model reactors: multiple reactions, isothermal single phase reactors Residence time distribution and mixing in continuous flow reactors Influence of micromixing on chemical reactions The role of the heat effect in model reactors Multi-phase reactors, single reactions Multi-phase reactors, multiple reactions Heat effects in multi-phase reactors The authors: The authors have accumulated a long experience both in fine chemicals and in the petrochemicals industry, in Europe as well as abroad. Currently they are jointly responsible for the research work in chemical reaction engineering and process development at Twente University. Several new reactor types and new processes have been developed at their institute and present research interests include gasification, fluidization and gas--liquid reactors, three-phase reactors, high-pressure technology in chemical reaction engineering, thermal behaviour of heterogeneous reactors and computer design and economic evaluation of reaction units and chemical plants.
This graduate textbook, written by a former lecturer, addresses industrial chemical reaction topics, focusing on the commercial-scale exploitation of chemical reactions. It introduces students to the concepts behind the successful design and operation of chemical reactors, with an emphasis on qualitative arguments, simple design methods, graphical procedures, and frequent comparison of capabilities of the major reactor types. It starts by discussing simple ideas before moving on to more advanced concepts with the support of numerous case studies. Many simple and advanced exercises are present in each chapter and the detailed MATLAB code for their solution is available to the reader as supplementary material on Springer website. It is written for MSc chemical engineering students and novice researchers working in industrial laboratories.
Appropriate for a one-semester undergraduate or first-year graduate course, this text introduces the quantitative treatment of chemical reaction engineering. It covers both homogeneous and heterogeneous reacting systems and examines chemical reaction engineering as well as chemical reactor engineering. Each chapter contains numerous worked-out problems and real-world vignettes involving commercial applications, a feature widely praised by reviewers and teachers. 2003 edition.
This reference conveys a basic understanding of chemical reactor design methodologies that incorporate both control and hazard analysis. It demonstrates how to select the best reactor for any particular chemical reaction, and how to estimate its size to determine the best operating conditions.
Designed to give chemical engineers background for managing chemical reactions, this text examines the behavior of chemical reactions and reactors; conservation equations for reactors; heterogeneous reactions; fluid-fluid and fluid-solid reaction systems; heterogeneous catalysis and catalytic kinetics; diffusion and heterogeneous catalysis; and analyses and design of heterogeneous reactors. 1976 edition.
Chemical Reactor Development is written primarily for chemists and chemical engineers who are concerned with the development of a chemical synthesis from the laboratory bench scale, where the first successful experiments are performed, to the design desk, where the first commercial reactor is conceived. It is also written for those chemists and chemical engineers who are concerned with the further development of a chemical process with the objective of enhancing the performance of an existing industrial plant, as well as for students of chemistry and chemical engineering. In Part I, the `how' and the `why' of chemical reaction engineering are explained, particularly for those who are not familiar with this area. Part II deals with the effects of a number of physical phenomena on the outcome of chemical reactions, such as micro and meso-mixing and residence time distribution, mass transfer between two phases, and the formation of another phase, such as in precipitations. These scale-dependent effects are not only important in view of the conversion of chemical reactions, but also with regard to the selectivity, and in the case of solid products, to their morphology. In Part III, some applications are treated in a general way, including organic syntheses, the conversion and formation of inorganic solids, catalytic processes and polymerizations. The last chapter gives a review of the importance of the selectivity for product quality and for the purity of waste streams. For research chemists and chemical engineers whose work involves chemical reaction engineering. The book is also suitable as a supplementary graduate text.
Elementary Chemical Reactor Analysis focuses on the processes, reactions, methodologies, and approaches involved in chemical reactor analysis, including stoichiometry, adiabatic reactors, external mass transfer, and thermochemistry. The publication first takes a look at stoichiometry and thermochemistry and chemical equilibrium. Topics include heat of formation and reaction, measurement of quantity and its change by reaction, concentration changes with a single reaction, rate of generation of heat by reaction, and equilibrium of simultaneous and heterogeneous reactions. The manuscript then offers information on reaction rates and the progress of reaction in time. Discussions focus on systems of first order reactions, concurrent reactions of low order, general irreversible reaction, variation of reaction rate with extent and temperature, and heterogeneous reaction rate expressions. The book examines the interaction of chemical and physical rate processes, continuous flow stirred tank reactor, and adiabatic reactors. Concerns include multistage adiabatic reactors, adiabatic stirred tank, stability and control of the steady state, mixing in the reactor, effective reaction rate expressions, and external mass transfer. The publication is a dependable reference for readers interested in chemical reactor analysis.