Over the past ten years, a number of new large-scale oceanographic programs have been initiated. These include the Climate Variability Program (CLIVAR) and the recent initiation of the Geochemical Trace Metal Program (GEOTRACES). These studies and future projects will produce a wealth of information on the biogeochemistry of the world's oceans. Aut
Over the past ten years, a number of new large-scale oceanographic programs have been initiated. These include the Climate Variability Program (CLIVAR) and the recent initiation of the Geochemical Trace Metal Program (GEOTRACES). These studies and future projects will produce a wealth of information on the biogeochemistry of the world's oceans. Aut
An engaging introduction to marine chemistry and the ocean's geochemical interactions with the solid earth and atmosphere, for students of oceanography.
The principles of chemical oceanography provide insight into the processes regulating the marine carbon cycle. The text offers a background in chemical oceanography and a description of how chemical elements in seawater and ocean sediments are used as tracers of physical, biological, chemical and geological processes in the ocean. The first seven chapters present basic topics of thermodynamics, isotope systematics and carbonate chemistry, and explain the influence of life on ocean chemistry and how it has evolved in the recent (glacial-interglacial) past. This is followed by topics essential to understanding the carbon cycle, including organic geochemistry, air-sea gas exchange, diffusion and reaction kinetics, the marine and atmosphere carbon cycle and diagenesis in marine sediments. Figures are available to download from www.cambridge.org/9780521833134. Ideal as a textbook for upper-level undergraduates and graduates in oceanography, environmental chemistry, geochemistry and earth science and a valuable reference for researchers in oceanography.
The interdisciplinary field of marine chemical ecology is an expanding and dynamic science. It is no surprise that the breadth of marine organisms studied expanded in concert with developments in underwater technology. With its up-to-date subject reviews by experts, Marine Chemical Ecology is the most current, comprehensive book on the subject. The
Ocean Biogeochemical Dynamics provides a broad theoretical framework upon which graduate students and upper-level undergraduates can formulate an understanding of the processes that control the mean concentration and distribution of biologically utilized elements and compounds in the ocean. Though it is written as a textbook, it will also be of interest to more advanced scientists as a wide-ranging synthesis of our present understanding of ocean biogeochemical processes. The first two chapters of the book provide an introductory overview of biogeochemical and physical oceanography. The next four chapters concentrate on processes at the air-sea interface, the production of organic matter in the upper ocean, the remineralization of organic matter in the water column, and the processing of organic matter in the sediments. The focus of these chapters is on analyzing the cycles of organic carbon, oxygen, and nutrients. The next three chapters round out the authors' coverage of ocean biogeochemical cycles with discussions of silica, dissolved inorganic carbon and alkalinity, and CaCO3. The final chapter discusses applications of ocean biogeochemistry to our understanding of the role of the ocean carbon cycle in interannual to decadal variability, paleoclimatology, and the anthropogenic carbon budget. The problem sets included at the end of each chapter encourage students to ask critical questions in this exciting new field. While much of the approach is mathematical, the math is at a level that should be accessible to students with a year or two of college level mathematics and/or physics.
Chemical Oceanography, Third Edition, is a survey of essential concepts that contains a wealth of new data and maps, resulting in a more in-depth examination of oceanic biogeochemical processes. The most up-to-date compilation of essential concepts and data available on the subject, this book responds to the need for a thorough, yet straightforward approach to the subject for students, researchers, and other professionals in marine science, geochemistry, and environmental chemistry. The third edition of Chemical Oceanography incorporates significant findings on the properties of oceans from recent, large-scale oceanographic programs and valuable new data derived from additional experiments. It also discusses the interactions of metals with inorganic and natural organic ligands and the effect of speciation of metals on bioavailability and toxicity. The section on carbonate systems now examines the input of fossil fuel CO2 into the ocean and its effect on the pH of the world oceans. Frank J. Millero, a world-renowned marine researcher and professor of undergraduate and graduate courses at the University of Miami for nearly 40 years, presents a time-tested and user-friendly resource specifically designed for both classroom use and self-study.